
strace and Lua

Viktor Krapivenskiy

Moscow Institute of Physics and Technology

23rd of September, 2017

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 1 of 15



Previously in strace

• strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

• Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

• Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K -th one.

• Complex filtering logic or sematics-preserving success injection is
impossible.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

• strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

• Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

• Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K -th one.

• Complex filtering logic or sematics-preserving success injection is
impossible.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

• strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

• Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

• Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K -th one.

• Complex filtering logic or sematics-preserving success injection is
impossible.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

• strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

• Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

• Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K -th one.

• Complex filtering logic or sematics-preserving success injection is
impossible.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Can we do better?

• Lua is a powerful, efficient, lightweight, embeddable scripting
language.

• LuaJIT is a Just-In-Time compiler for Lua that is considered to be
”one of the fastest dynamic language implementations”.

• LuaJIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

• It can also create and manipulate boxed C objects of known types.

• Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

• No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

• Lua is a powerful, efficient, lightweight, embeddable scripting
language.

• LuaJIT is a Just-In-Time compiler for Lua that is considered to be
”one of the fastest dynamic language implementations”.

• LuaJIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

• It can also create and manipulate boxed C objects of known types.

• Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

• No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

• Lua is a powerful, efficient, lightweight, embeddable scripting
language.

• LuaJIT is a Just-In-Time compiler for Lua that is considered to be
”one of the fastest dynamic language implementations”.

• LuaJIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

• It can also create and manipulate boxed C objects of known types.

• Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

• No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

• Lua is a powerful, efficient, lightweight, embeddable scripting
language.

• LuaJIT is a Just-In-Time compiler for Lua that is considered to be
”one of the fastest dynamic language implementations”.

• LuaJIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

• It can also create and manipulate boxed C objects of known types.

• Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

• No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

• Lua is a powerful, efficient, lightweight, embeddable scripting
language.

• LuaJIT is a Just-In-Time compiler for Lua that is considered to be
”one of the fastest dynamic language implementations”.

• LuaJIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

• It can also create and manipulate boxed C objects of known types.

• Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

• No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



FFI?

ffi = require ’ffi’

ffi.cdef[[

// available as ffi.C.printf

int printf(const char *fmt, ...);

// a boxed object can be created with, e.g.,

// ffi.new(’struct my_struct’)

struct my_struct {

int a;

uint64_t b; // a number of types are pre-defined

};

// available as ffi.C.MY_CONSTANT

enum { MY_CONSTANT = 42 };

// available as ffi.C.ANOTHER_CONSTANT

const static int ANOTHER_CONSTANT = 84;

]]

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 4 of 15



The mechanism (1/3)

/* typedefs for kernel_[u]long_t are provided to FFI,

as well as definitions for some other structures */

struct tcb {

int flags; /* Not documented as a part of the

* interface, but used by helper library */

int pid; /* Tracee’s PID */

int qual_flg; /* Just like the ::flags field */

unsigned long u_error; /* Error code */

kernel_ulong_t scno; /* Syscall number */

/* MAX_ARGS gets expanded before feeding it to FFI */

kernel_ulong_t u_arg[MAX_ARGS]; /* Syscall args */

kernel_long_t u_rval; /* Syscall return value */

/* That’s it for FFI’s definition of struct tcb, but not

* for strace’s once! */

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 5 of 15



The mechanism (2/3)

• strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

• Initially, both of them are empty.

• bool monitor(unsigned scno, unsigned pers, bool
on entry, bool on exit) — marks syscall with number scno on
personality pers as to be returned from next sc;

• Exposed as strace.C.monitor.

• void monitor all(bool on entry, bool on exit) — marks all
syscalls as to be returned from next sc;

• Exposed as strace.C.monitor all.

• struct tcb * next sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

• Not exposed directly; strace.next sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

• To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (2/3)

• strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

• Initially, both of them are empty.

• bool monitor(unsigned scno, unsigned pers, bool
on entry, bool on exit) — marks syscall with number scno on
personality pers as to be returned from next sc;

• Exposed as strace.C.monitor.

• void monitor all(bool on entry, bool on exit) — marks all
syscalls as to be returned from next sc;

• Exposed as strace.C.monitor all.

• struct tcb * next sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

• Not exposed directly; strace.next sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

• To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (2/3)

• strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

• Initially, both of them are empty.

• bool monitor(unsigned scno, unsigned pers, bool
on entry, bool on exit) — marks syscall with number scno on
personality pers as to be returned from next sc;

• Exposed as strace.C.monitor.

• void monitor all(bool on entry, bool on exit) — marks all
syscalls as to be returned from next sc;

• Exposed as strace.C.monitor all.

• struct tcb * next sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

• Not exposed directly; strace.next sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

• To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (2/3)

• strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

• Initially, both of them are empty.

• bool monitor(unsigned scno, unsigned pers, bool
on entry, bool on exit) — marks syscall with number scno on
personality pers as to be returned from next sc;

• Exposed as strace.C.monitor.

• void monitor all(bool on entry, bool on exit) — marks all
syscalls as to be returned from next sc;

• Exposed as strace.C.monitor all.

• struct tcb * next sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

• Not exposed directly; strace.next sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

• To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (2/3)

• strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

• Initially, both of them are empty.

• bool monitor(unsigned scno, unsigned pers, bool
on entry, bool on exit) — marks syscall with number scno on
personality pers as to be returned from next sc;

• Exposed as strace.C.monitor.

• void monitor all(bool on entry, bool on exit) — marks all
syscalls as to be returned from next sc;

• Exposed as strace.C.monitor all.

• struct tcb * next sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

• Not exposed directly; strace.next sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

• To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (3/3)

• More C functions (for performing injection, reading and writing
memory, using strace’s path-matching facilities) are exposed through
the strace.C namespace.

• C constants (sets of syscall info entries, signals, errors and ioctl

entries per personality) are also exposed through the strace.C

namespace.

• The helper library written in Lua provides convenience wrappers
around the low-level C interface, as well as a push-style hooking API.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 7 of 15



The mechanism (3/3)

• More C functions (for performing injection, reading and writing
memory, using strace’s path-matching facilities) are exposed through
the strace.C namespace.

• C constants (sets of syscall info entries, signals, errors and ioctl

entries per personality) are also exposed through the strace.C

namespace.

• The helper library written in Lua provides convenience wrappers
around the low-level C interface, as well as a push-style hooking API.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 7 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

• strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

• strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

• Get syscall/signal/error/ioctl request number by its name, or vice
versa.

• strace.inject signal(sig), strace.inject error(err) —
inject a signal or an error by its name or number.

• strace.read obj(addr, ct[, nlelem]),
strace.write obj(addr, obj) — read or write a FFI object
from/to the tracee’s memory at the given address (ct[, nelem]

define a C type to read).

• strace.read str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

• Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



Hooks

Note: when argument is either "entering", "exiting", or "both".

• strace.hook(scname, when, callback) — by syscall name.

• strace.hook class(clsname, when, callback) — by syscall
class.

• strace.hook scno(scno, pers, when, callback) – by syscall
number and personality number.

• strace.at exit(callback) – at exit.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Hooks

Note: when argument is either "entering", "exiting", or "both".

• strace.hook(scname, when, callback) — by syscall name.

• strace.hook class(clsname, when, callback) — by syscall
class.

• strace.hook scno(scno, pers, when, callback) – by syscall
number and personality number.

• strace.at exit(callback) – at exit.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Hooks

Note: when argument is either "entering", "exiting", or "both".

• strace.hook(scname, when, callback) — by syscall name.

• strace.hook class(clsname, when, callback) — by syscall
class.

• strace.hook scno(scno, pers, when, callback) – by syscall
number and personality number.

• strace.at exit(callback) – at exit.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Hooks

Note: when argument is either "entering", "exiting", or "both".

• strace.hook(scname, when, callback) — by syscall name.

• strace.hook class(clsname, when, callback) — by syscall
class.

• strace.hook scno(scno, pers, when, callback) – by syscall
number and personality number.

• strace.at exit(callback) – at exit.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Example: counting number of processes spawned

n = 0

assert(strace.hook({’clone’, ’fork’, ’vfork’}, ’exiting’,

function(tcp)

if tcp.u_rval ~= -1 then

n = n + 1

end

end))

strace.at_exit(function() print(’Processes spawned:’, n) end)

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 10 of 15



Example: using external preprocessor (1/2)

ffi = require ’ffi’

f = assert(io.popen([[cpp - <<EOF | grep -v ’^#’

#define _GNU_SOURCE

#include <fcntl.h>

enum { f_setpipe_sz = F_SETPIPE_SZ };

EOF]], ’r’))

ffi.cdef(f:read(’*a’))

f:close()

assert(strace.hook({’fcntl’, ’fcntl64’}, ’entering’,

function(tcp)

if tcp.u_arg[1] == ffi.C.f_setpipe_sz then

assert(strace.inject_error(’EPERM’))

end

end))

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 11 of 15



Example: using external preprocessor (2/2)

ffi = require ’ffi’

f = assert(io.popen([[cpp - <<EOF | grep -v ’^#’

#include <sys/utsname.h>

EOF]], ’r’))

ffi.cdef(f:read(’*a’))

f:close()

assert(strace.hook(’uname’, ’exiting’, function(tcp)

if tcp.u_rval == -1 then

return

end

local u = assert(strace.read_obj(tcp.u_arg[0], ’struct utsname’))

local s = ’Windows’

assert(ffi.sizeof(u.sysname) >= #s + 1)

ffi.copy(u.sysname, s)

assert(strace.write_obj(tcp.u_arg[0], u))

end))

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 12 of 15



Example: using external preprocessor (2/2)

$ uname

Linux

$ strace -l pretend-win.lua -e none uname

Windows

+++ exited with 0 +++

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 13 of 15



Example: using ffiex library

ffiex = require ’ffiex’

ffiex.cdef(’#include <sys/wait.h>’)

function is_truthy(x) return x and x ~= 0 end

stats = {}

assert(strace.hook({’waitpid’, ’wait4’, ’osf_wait4’}, ’exiting’,

function(tcp)

if tcp.u_rval == -1 or tcp.u_rval == 0 or tcp.u_arg[1] == 0 then

return

end

local status = tonumber(assert(strace.read_obj(tcp.u_arg[1],

’int’)))

if is_truthy(ffiex.defs.WIFEXITED(status)) then

local c = ffiex.defs.WEXITSTATUS(status)

stats[c] = (stats[c] or 0) + 1

end

end))

strace.at_exit(function()

print(’Exit codes:’)

for k, v in pairs(stats) do print(k .. ’:’, v) end

end)

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 14 of 15



Project status

Not merged yet.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 15 of 15


