

JetBrains MPS

Create a programming language that the whole company can understand

Software Engineering Conference Russia October 2017, St. Petersburg

Artem Tikhomirov

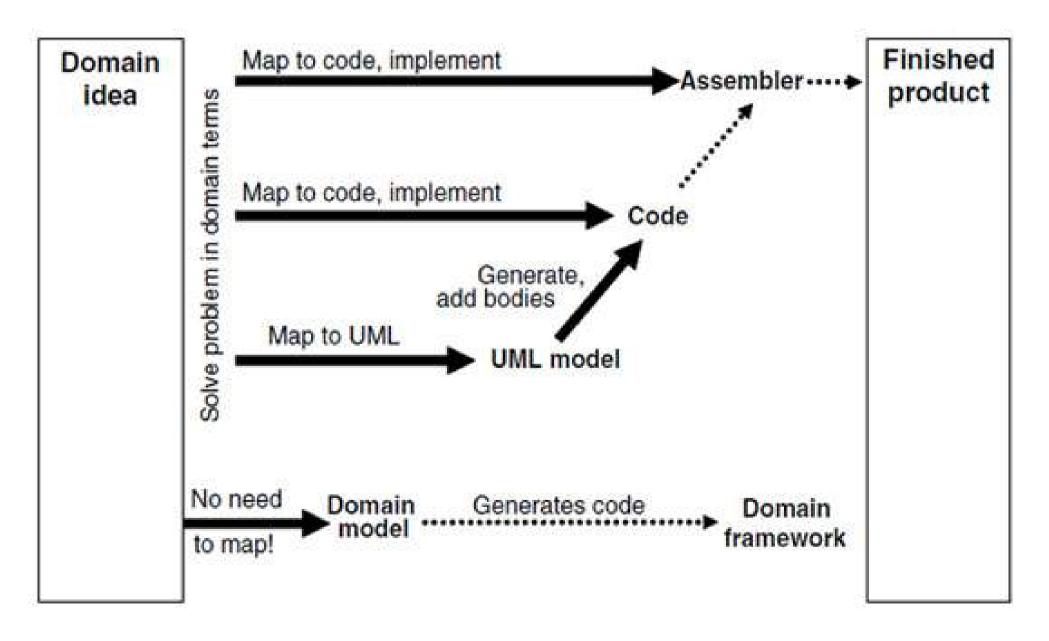
Domain Specific Languages

 A DSL is a focused, processable language for describing a specific concern when building a system in a specific domain

 The abstractions and notations used are natural/suitable for the stakeholders who specify that particular concern.

Markus Voelter

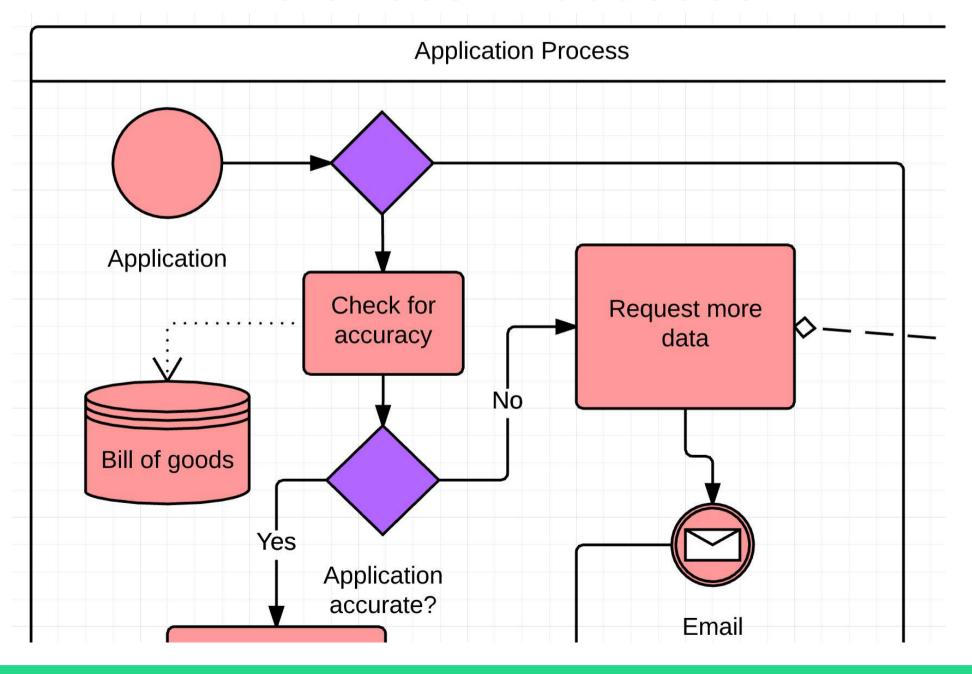
Math


$$2\cos z = \left(1+rac{\sqrt{-1}z}{\infty}
ight)^{\infty} + \left(1-rac{\sqrt{-1}z}{\infty}
ight)^{\infty} = e^{\sqrt{-1}z} + e^{-\sqrt{-1}z}$$

$$\Psi(x) = \sum_{k=0}^{\infty} rac{\cos{(3^k x)}}{k!}$$

$$\int\limits_{\gamma} f(z)\,dz = \int\limits_{a}^{b} f(z(t))z'(t)\,dt = \int\limits_{\gamma} (u\,dx-v\,dy) + i\int\limits_{\gamma} (v\,dx+u\,dy).$$

$$\sum_{1\leqslant k\leqslant n}f(z(t_k))(z(t_k)-z(t_{k-1})).$$


How come?

DSLs? Who cares?

You! DSLs are ubiquitous!

Buisness Processes

Health and medicine

• Stakeholder integration, Scalable Business, Document Generation + Certification

Finance

Precise Specification and Implementation of Insurance Products ("Rules")

Government

• Changing Regulations, Fast Implementation, End User Empowerment

Automotive

• Code Complexity, Frameworks (Autosar), Product Lines

Aerospace

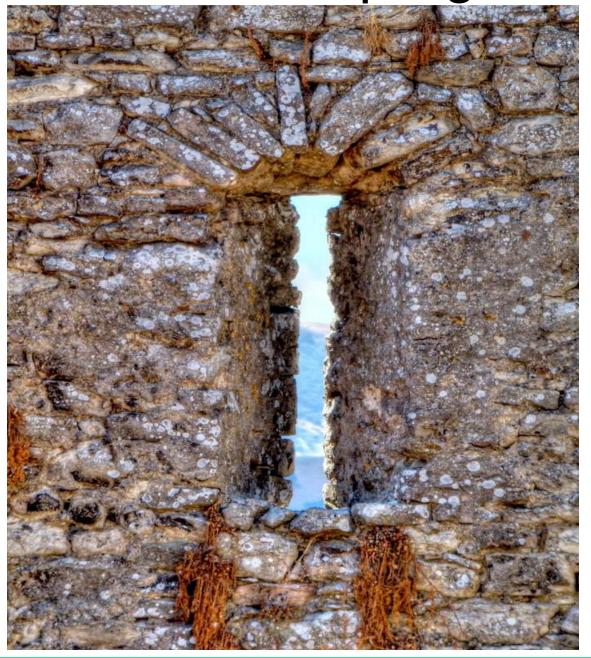
Reduction of Accidental Complexity in Code, Process Conformance (Docs)

Robotics

A powerful language and IDE for existing frameworks (Industry Robots, ROS)

Embedded software

Multi-Paradigm Programming, not just Simulink and C


Science

Consistent Derived Documents

Most widely adopted DSM tool

	Select Strength:	fy = 6000	0 psi; f'c × 4	000 psi	Select design p:	pmax	Select Load Case:	1.20	1.6L	3			1	Г		
	$f_{i} =$	60000	F ₄ =	4000	Design p =	0.0069	Est	w_(k/h) =	1.78		- 1	1				
	P _{min} =	0.0033	Pmax*	0.0181	Design R, =	388.79		M. [ft-k] =	227.8				- A			
Н	Ra et pain [psi] =	192.2	Re ot peace (psi) a	912.0	bd ¹ =	7813.549		M _n [ft-k] =	253.2		*	Section (0 - 00			
					d =	22.10	0	Sensity (pcf)	150							
ı	Enter Given	s & Estin	nations:								And Comment			1	If a	i>t
H	Wo (k/ft)	0.55	b., (in)	16	b _{ett} [in]	80		Neutral	Axis Cale	ulations	N.A. is in	the flar	160		A _{at} [(m ²)	10.88
K	w _k (k/ft)	0.4	h (in)	27	t [in]	3		T (Nips)	142.2	z (in) =	21.60				M _{err} (k-ft)	1224.00
ä	Length (ft)	32	d (in)	24	a (in)	0.49		A _c (in ²)	41.8	z [in] =	22.50				M _e (k-ft)	996.16
	Clear Cover	3	A _c (in ²)	2.65	βs	0.85		Amanga (im ²)	10000	Governing	22.50				Rea	1441.20
	Est Self Wt Splf	400	A _{s min} (in ²)	1.214	c [in]	0.57									p _w =	0.03
	Actual Self Wt [plf]	450.00	A _{rmin} (in ^b)	1.280	ε,	0.1227		Select A	in Tensio	n-		if a	<ht< td=""><td></td><td>a (in)</td><td>14.64</td></ht<>		a (in)	14.64
			φM _e [ft-k]	253.36				BAR	Otty	As [in ¹]		A, (in ²)	2.6496		c[in]	17.22
								85	3	2.37					C.	0.00
										110,000					A _{to} (in ²)	13.27
															A, [in ³]	
-	Sar Selectio	in												-		1
		Number of Bars in a Single Layer of Reinforcing								1						
ij	BAR	BAR 2 3		3	4		- 1		6							
	DETROIT :	Acea	Width	Area	Width	Area	Width	Area	Wheel	Area	Width	Area	Width	Aces	Width	
	84	0.39	6.80	0.38	8.30	0.78	9.80	0.98	11.10	1 10	12.80	1 17	14.30	2.57	15.80	
ij.	MS-	0.63	6.90	0.91	9.50	1.23	10.20	1.53	11.60	1,84	13.4	2.15	15.00	2.45	16.70	
5	MG	O.BB	7.00	1.52	8.80	1.77	10.50	2.21	12.30	2.65	14.00	3.09	15.80	3.53	17.50	
	#7	1.20	7.20	1.50	9.00	2.43	10.90	3.01	12.80	3.61	14.70	4.21	16.50	4.83	18.40	
	ME	1.57	7.30	2.35	9.50	3.14	21.50	3.93	15.30	4.71	15.30	5.50	17.30	6.28	19.50	
	119	2.00	7.60	3.00	9.80	4.00	12.10	5.00	14.30	6.00	16.60	7.00	18.80	8.00	21.10	
	#10	2.55	7.80	3.79	10.40	5.06	12.90	6.33	15.50	7.59	18.00	8.86	20.50	10.12	23.10	
	#11	3.12	8.10	4,68	10.90	6.25	13.80	7.61	16.60	9.37	19.40	10.94	22.20	12.50	25.00	
1	#14	4.50	8.90	6.75	12.30	9.00	15.70	11,25	19.00	13.50	22.40	25.75	25.80	18.00	29.20	
2	#13	8.00	10.60	12.00	15.10	16.00	19.60	20.00	24.10	24.00	28.60	28.00	33.10	32.00	37.70	

Too narrow view of programming?

Demo

- Language to configure voice menu for an answering maching
- Jetbrains MPS as a Rich Client Platform
- Business value is negligible
 - Market share of your office assistant is small

Health and medicine

• Stakeholder integration, Scalable Business, Document Generation + Certification

Finance

Precise Specification and Implementation of Insurance Products ("Rules")

Government

• Changing Regulations, Fast Implementation, End User Empowerment

Automotive

• Code Complexity, Frameworks (Autosar), Product Lines

Aerospace

Reduction of Accidental Complexity in Code, Process Conformance (Docs)

Robotics

A powerful language and IDE for existing frameworks (Industry Robots, ROS)

Embedded software

• Multi-Paradigm Programming, not just Simulink and C

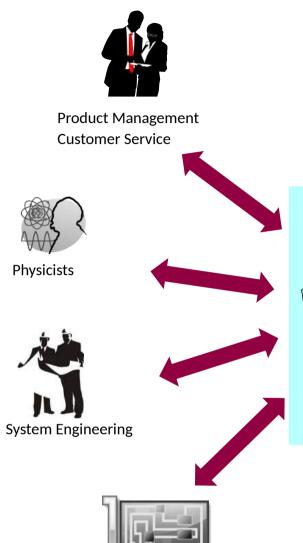
Science

Consistent Derived Documents

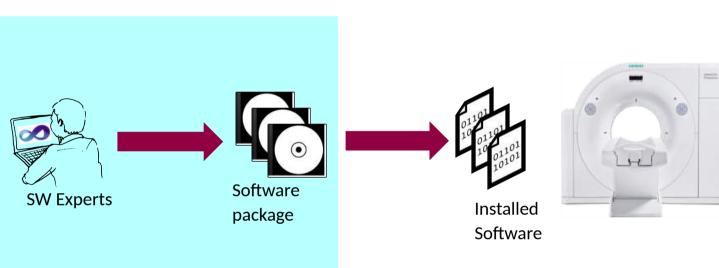
Healthcare

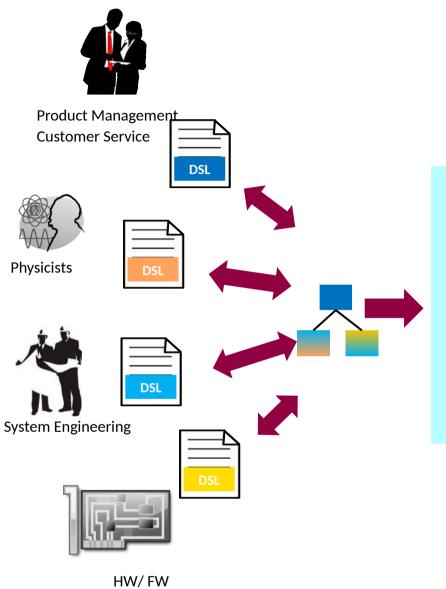
Software Medical Devices Accessible to Doctors Robustness and Correctness Required

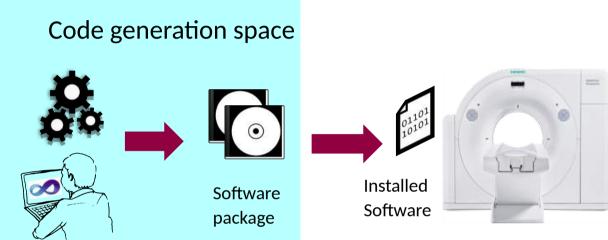
To be FDA-certified

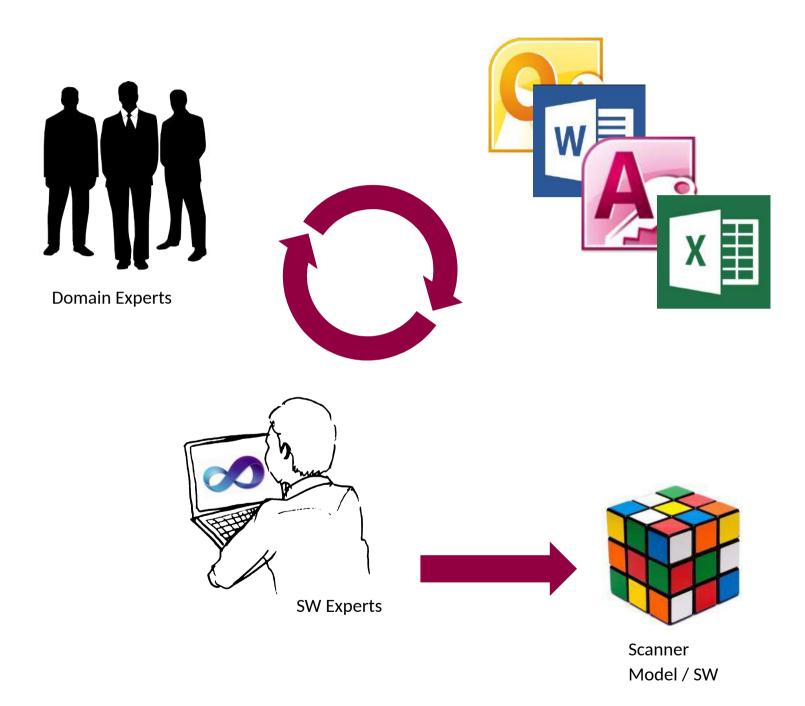

Needs to run on multiple target platforms

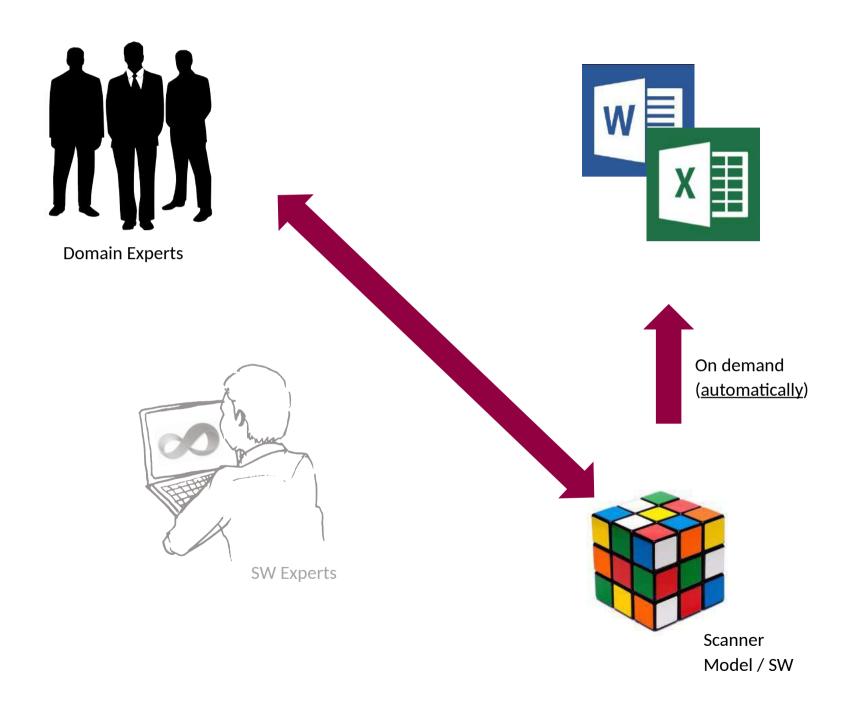
- IOS
- Android
- JavaScript

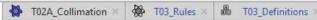



Stakeholders driving the development




HW/ FW




SW Experts

Focus T01

Catalogue T01_Rules imports & platform_Definitions

Default clinical case: <no defaultClinicalCase>

collimation tabular rule: T01 Slot plate and coll.

description: this is a description text

	Collimation [mm]	Readout DMS	Preprocessed data matrix	Collimator Opening	Soft opening inner slot plate [mm]	Soft opening outer slot plate	Focus
(1) "30x0.1"	30x0.1	34x0.1	30x0.1	1300.000	n/a	n/a	not so big, big
(2) "30x0.1Mg"	30x0.1	34x0.1	30x0.1	1300.000	n/a	n/a	not so big, big
(3) "30x0.1AgMg	30x0.1	34x0.1	30x0.1	1300.000	n/a	n/a	not so big, big
(4) "4x0.1"	4x0.1	120000000000000000000000000000000000000		n/a	1	1.1	not so big
(5) "4x0.1Mg"	4x0.1	Error: paramete	er must be in range	n/a	1	1.1	not so big
(6) "3x1"	3x1	32x0.1	302x0.1	n/a	1	1.1	not so big, n/a, big
(7) "1x3"	1 x 3	32x0.1	32x0.1	n/a	2	2.2	not so big, big
(S) "1x3Mg"	1 x 3	32x0.1	32x0.1	n/a	3	3.3	not so big, big

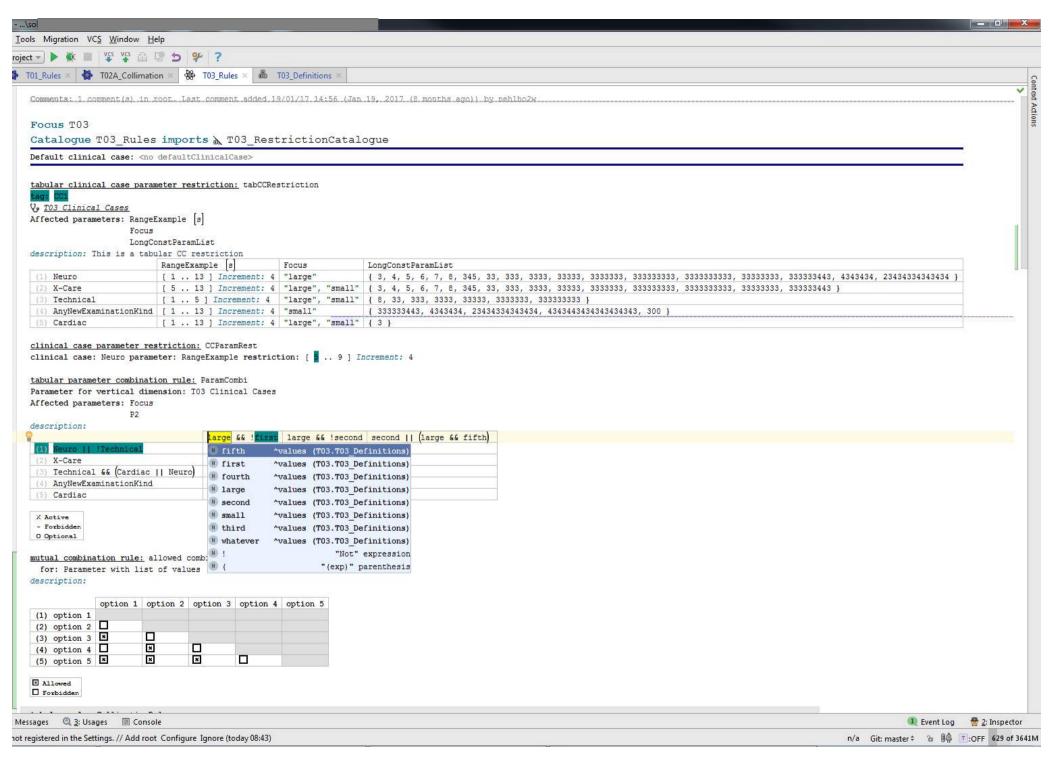
formula: Formula with Parameter References

alias: S,

description: This is a text to decribe the formula.

$$S_1 = \text{Reconstructed Slice Width} \star 4 + \sum_{i=3}^{\text{Gantry rotation time}} \left(\frac{N_s}{3}\right) + \left(\cos\left(\text{Number of preped slices}\right) + \text{Tube Voltage}\right)$$

tabular rule: Tube Voltage and Filtration


description:

	Spectral Filtration	Tube Voltage kV
1 <>	None	7, 8, 9, 10, 11, 12, 13, 14
2 💠	Mg	10, 11, 12, 13, 14
3 💠	AgMg	12, 14

tabular rule: Selectable wedge and filtration

description:

	Wedge Filter	Spectral Filtration	platform_Clinical_Cases			
1 <>	f1	None	Regular, Topogram			
2 <>	f1+f2	None	Case3, Case8, Case4, Case5			
3 <>	f1	Mg	Topogram, Case4, Case6			
4 <>	f1+f2	Mg	Case8, Topogram, Case4, Case6, Case5			
5 <>	f1	AgMg	Case9			

When to DSL?

- Complex domain knowledge
- Painful translation of expertise from a domain specialist to a programmer
 - Gap in abstraction level
- Not directly related to programming
 - biology, math, insurance
 - Verification, analysis, simulation.
- Classes of applications
 - Software factories

Typical risks

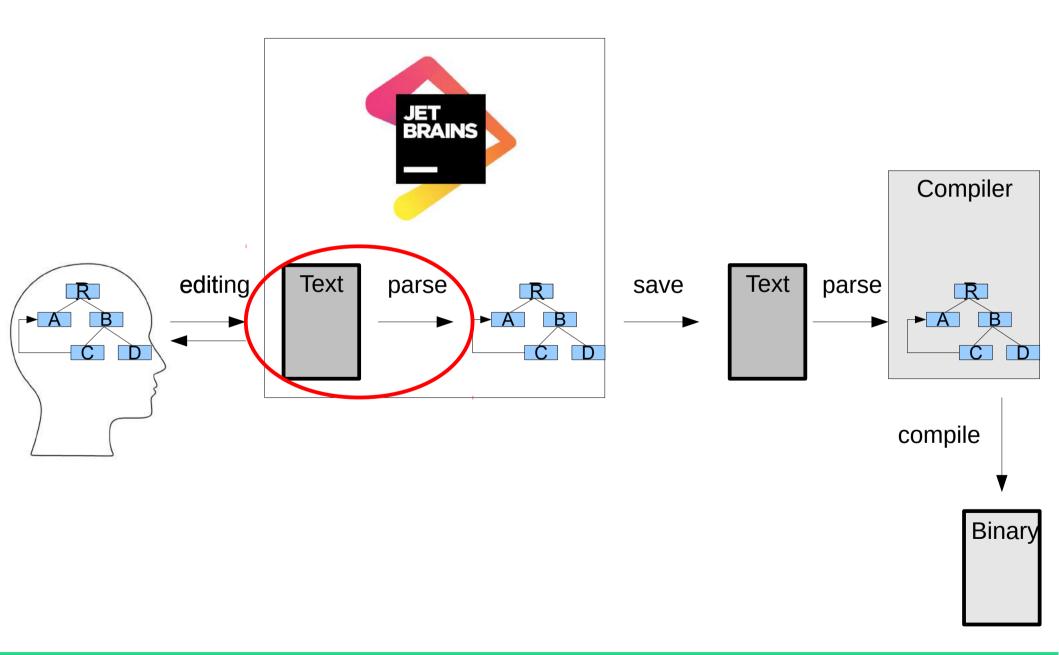
- Language design takes effort
 - Adds to the cost of the project → need for reuse

- Language design skills
 - Steep learning curve
 - What goes into the language
 - How to make it elegant

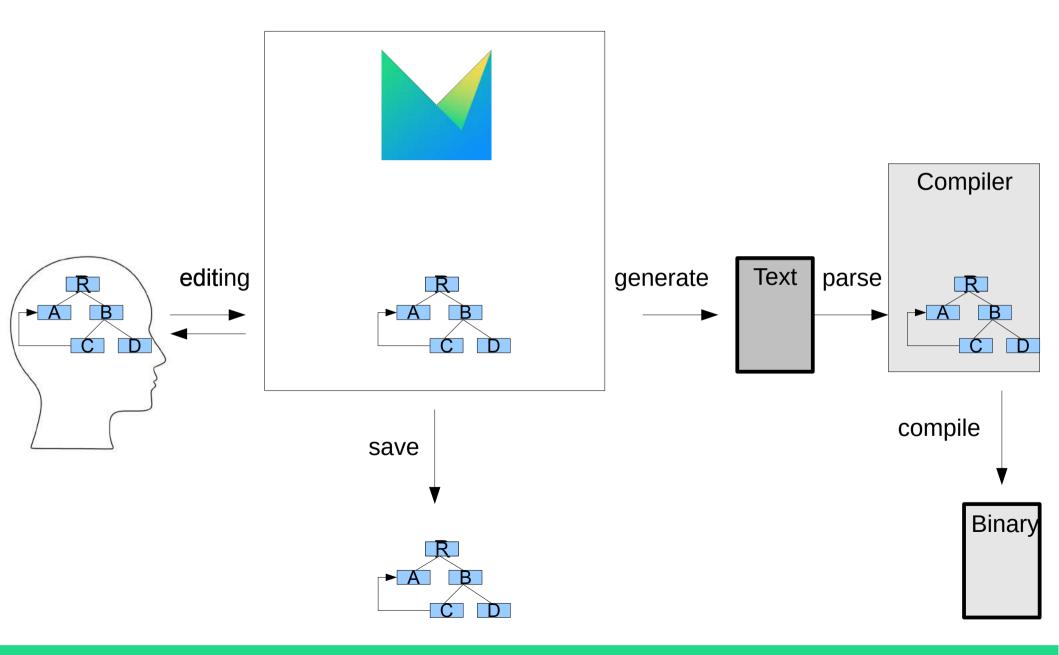
Proper tooling

MPS is an open-source language workbench for DSL development

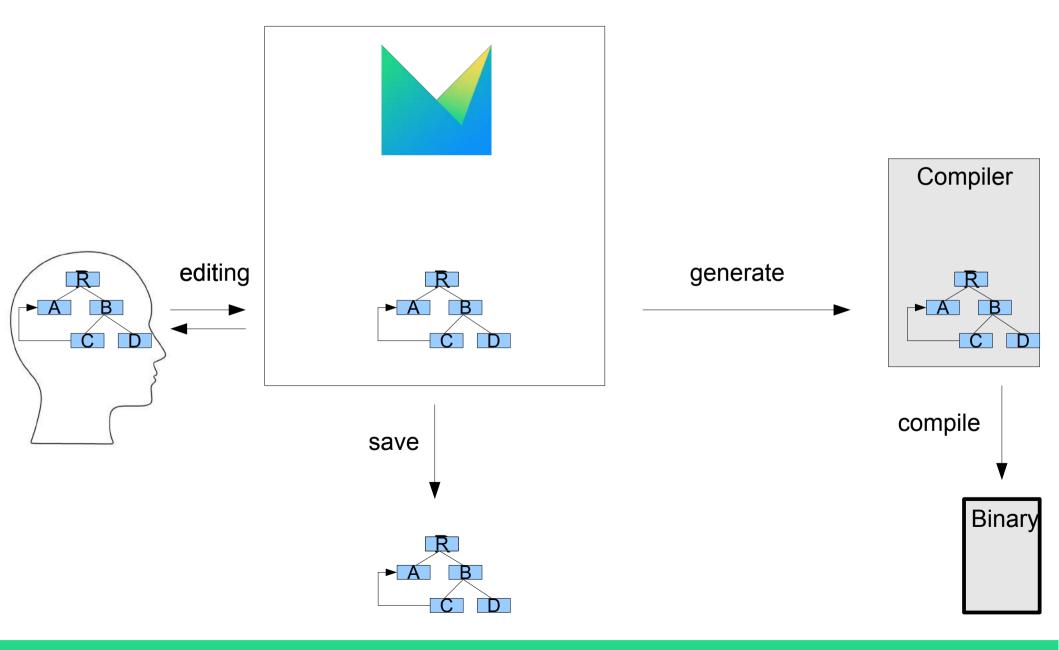
DSM isn't new

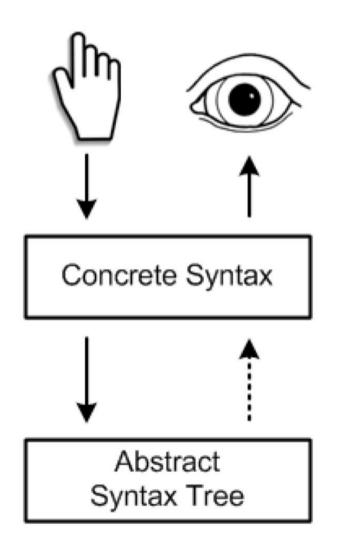

DSLs with MPS

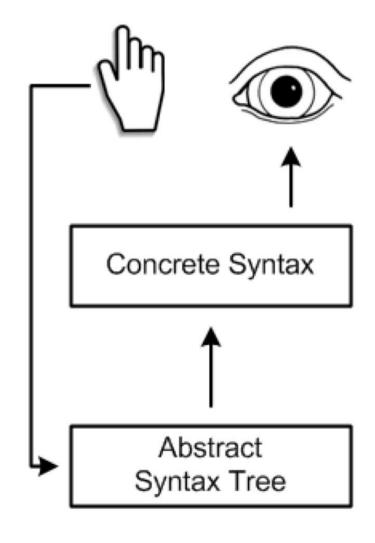
- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP


DSLs with MPS

- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP


Textual editing


Projectional editing



Projectional editing

Projectional editing


```
public class Gol {
  public static void main(String[] args) {
                                                                Rich syntaxes
    new Gol().run();
  public void run() {
    sequence<Coordinate> generation = new arraylist<Coordinate>{(4, 5), (5, 5), (6, 5)};
    for (int i = 0; i < 5; i++) {
      System.out.println("Next generation: " + generation);
      generation = nextGeneration(generation);
  private sequence<Coordinate> nextGeneration(sequence<Coordinate> generation) {
    set<Coordinate> candidates = new hashset<Coordinate>:
    candidates.addAll(generation);
    generation.forEach({~it => candidates.addAll(neighbors(it)); });
    set<Coordinate> nextGeneration = new hashset<Coordinate>;
    foreach c in candidates {
      if (boolean Default: dead
                                                      generation.contains(c)
                                                                              !generation.contains(c)
                                                     dead
            countAliveNeighbors(generation, c) < 2
                                                                              dead
            countAliveNeighbors(generation, c) == 2
                                                     alive
                                                                              dead
            countAliveNeighbors(generation, c) == 3
                                                     alive
                                                                              alive
            countAliveNeighbors(generation, c) > 3
                                                      dead
                                                                              dead
        nextGeneration.add(c);
    return nextGeneration;
  private sequence<Coordinate> neighbors(Coordinate cell) {
                               middle right

    cell).asSequence;

    ((cell +
                      left
               upper (-1, 1) (0, 1) (1, 1)
middle (-1, 0) (0, 0) (1, 0)
lower (-1, -1) (0, -1) (1, -1)
  private int countAliveNeighbors(sequence<Coordinate> currentGeneration, Coordinate cell) {
    return neighbors(cell).intersect(currentGeneration).size;
```

Tabular notations

```
checked
exported statemachine FlightAnalyzer initial = beforeFlight {
                       next(Trackpoint* tp)
         beforeFlight [tp->alt > 0 m] -> airborne
                       [tp->alt == 0 m && tp->speed == 0 mps] -> crashed
         airborne
                       [tp->alt == 0 m && tp->speed > 0 mps] -> landing
                       [tp->speed > 200 mps && tp->alt == 0 m] -> airborne
                        { points += VERY HIGH SPEED; }
                       [tp->speed > 100 mps && tp->speed <= 200 mps && tp->alt == 0
  States
                           m] -> airborne
         landing
                       [tp->speed == 0 mps]
                       [tp->speed > 0 mps] -
                        { points--; }
         landed
         crashed
```

{ points += HIGH_SP Core Data DefaultRegions for entity BillingRegion

reset()

[] -> beforeFlight

Code	Name	Base Min Price	Max Rebate Factor
BW	Baden Württemberg	0.20	0.8
BY	Bayern	0.20	0.8
BE	Berlin	0.15	0.7
ВВ	Brandenburg	0.10	0.7
НВ	Bremen	0.20	0.7
HH	Hamburg	0.15	0.7
HE	Hessen	0.15	0.7
MV	Mecklenburg-Vorpommern	0.10	0.7
NI	Niedersachsen	0.15	0.7
NW	Nordrhein-Westfalen	0.15	0.7
RP	Rheinland-Pfalz	0.15	0.7
SL	Saarland	0.15	0.7
SN	Sachsen	0.10	0.7
ST	Sachsen-Anhalt	0.10	0.7
SH	Schleswig-Holstein	0.15	0.7
TH	Thüringen	0.10	0.7

Symbolic notations

```
int32 sumUpIntArray(int32[] arr, int32 size) {
  return \( \sum_{\text{arr[i]}} \);
sumUpIntArray (function)
int32 averageIntArray(int32[] arr, int32 size) {
  return \frac{\sum_{i=0}^{i=0} arr[i]}{size};
averageIntArray (function)
double midnight1(int32 a, int32 b, int32 c) {
} midnight1 (function)
```

```
double midnight2(int32 a, int32 b, int32 c) {  -b + \sqrt{b^2 - \sum_{i=1}^4 a * c} ;  return  2 * a  } midnight2 (function)  double \ sumOfProductsOfLogs(int32[] \ arr, \ int32 \ size) \{  return  \sum_{k=0}^{k} log_2 arr[i] ;  return  \sum_{k=0}^{k} log_2 arr[i] ;  } sumOfProductsOfLogs (function)
```

Positional notations

Rule Set Type DemoRuleSetType

Rule Set Type DemoRuleSetType

Business objects

person: Person

Business objects

<no business objects>

Variables:

PRMI : int

FR : int

NN : int

TT : int

J : int

A3 : int

G3 : int

ANUI : int

X : int

Parent

<no parent>

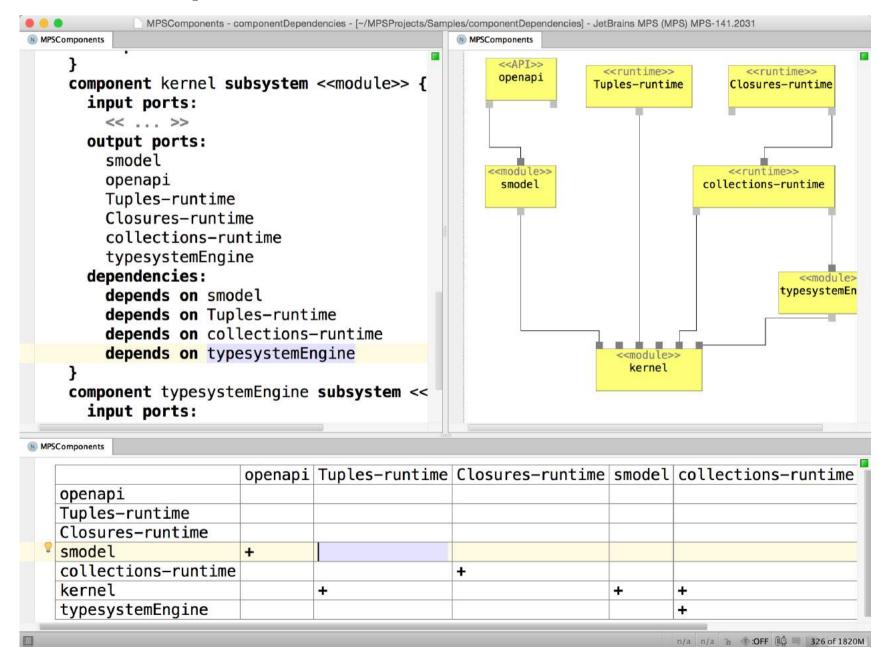
Libraries

Standard

Extra

Variables:

<no variables>


Parent

<no parent>

Libraries

<no libraries>

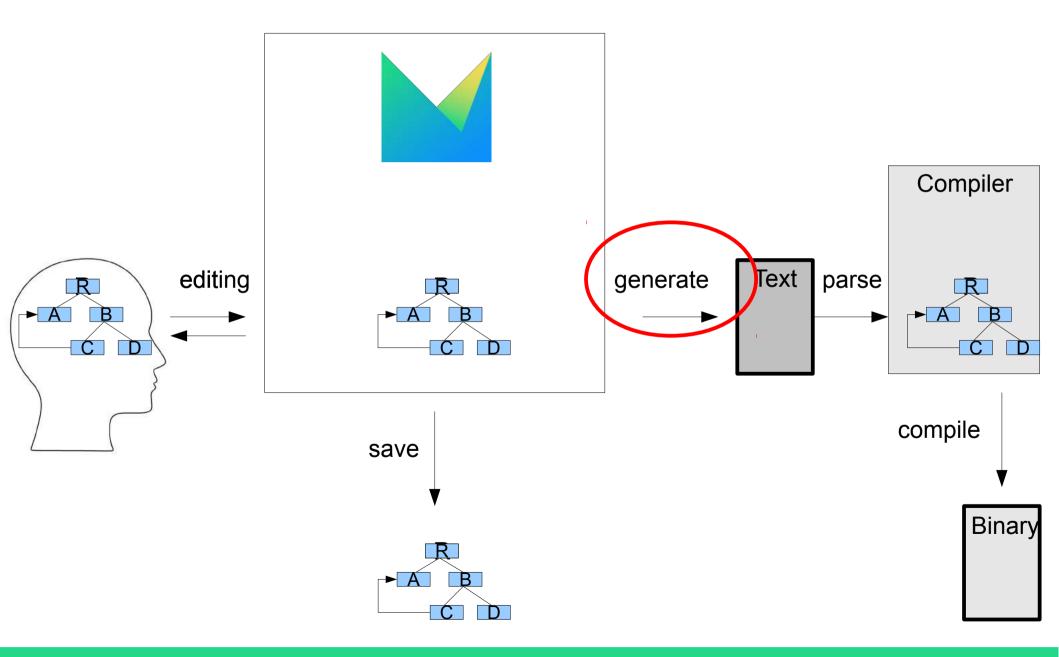
Multiple switchable notations

Combine languages

```
variables:
   int x1
                      = 10 * (1 + 2)
                                                            ==> 30
   int x2
                      = 20
                                                            ==> 20
                      = true | !false
   boolean b1
                                                            ==> true
                      = if [ b1 then 12 else 13 ]
   int b2
                                                            ==> 12
   list<int> intList = list(1, 2, 3)
                                                            ==> [1, 2, 3]
   int three
                      = intList.last
                                                            ==> 3
   list<int> t2
                      = intList.where it > 2
                                                            ==> [3]
                      = intList.all|it > 0|
   boolean allEl
                                                            ==> true
                      = doWithTwoInts(:add, 1, 3)
   int surprise2
                                                            ==> 4
   [int, int] tuple = [1, 2]
                                                            ==> [1, 2]
   int one
                      = tuple[0]
                                                            ==> 1
                      = alt [x1 < 0 && x2 > 1 => 2]
   int c1
                                                            ==> 0
                            x1 > 0 && x2 == 1 => 1
   int c2
                                                            ==> 9
                                   x1 < 0 \ x1 == 0 \ x1 > 0
                         x2 < 0
                                           2
                                                    3
                         x2 == 0 | 4
                                           5
                                                    6
                                                         string res
                                                                          =
                                                                                         4>
                                                                                                            ==> JAX
                         x2 > 0
   int complicated
                                                                            [x1 < 10]
                                                                                          [x1 > 10]
                        val t1 = 10 + 20
                        val t2 = t1 + 30
                                                                                     [x2 < 30]
                                                                            "Hello"
                                                                                               [x2 > 30]
                        t2
                                                                                     "at"
                                                                                               "JAX"
functions:
  fun add(int a, int b)
                                                          : int
                                                                               = a + b
  fun doWithTwoInts((int, int => int) fun, int a, int b) : int
                                                                               = fun.exec(a, b)
  fun anotherFun(option<int> i)
                                                          : int
                                                                               = with some i as x \Rightarrow x + 1 none 20
  fun giveMeAnInt()
                                                                               = anotherFun(some(10))
                                                          : int
                                                          : collection<string> = p.workedAt.offices.street
  fun getStreets(Person p)
```

```
public functional component DriveTrain {
  produces SpeedFromEngine
  produces EngineStatus
  produces Gear where it < gearsCount
  consumes RoadConditions
  param int gearsCount
  consumes DrivingCommands
  SpeedFromEngine
             FourCylEngine
                                                 EngineStatus
       Error: port [DataItemPortType] not compatible with governing port [DataItemPortType]
            DrivingCommands
                                                DriveTrainController
                                                                                     Gearbox
             RoadConditions
functional component Car {
 LocationServices
    ActuatorBox
                                            HeadUnit
                         DriveTrain
    RoadSensors
                         gearsCount = 7
```

Parsing is the bottleneck

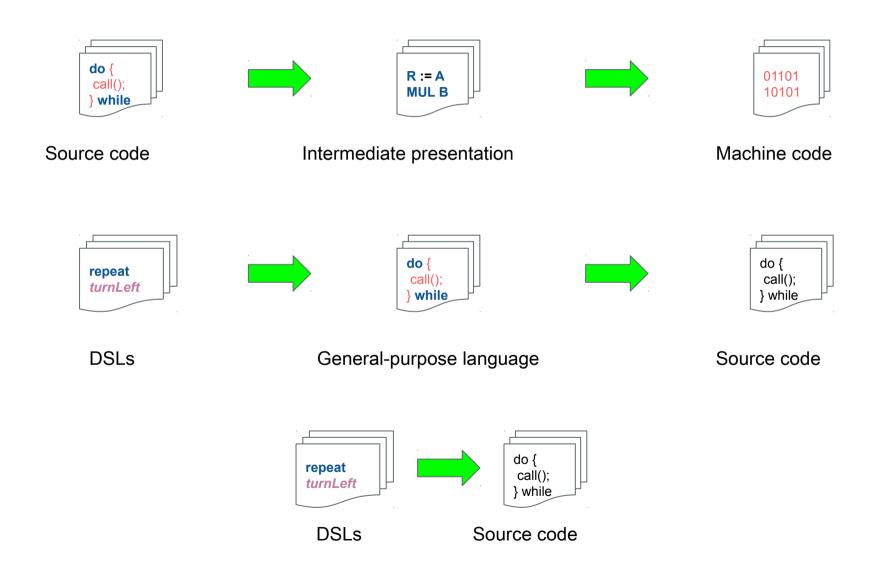

... of language expressiveness

- Limits the **possible** syntaxes
- Allows only **one** editable code visualization
- Complicates combining languages

DSLs with MPS

- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP

Code generation



Generators


Map solutions from a **problem domain** to an **implementation domain**

- Transform models
- Output models or text

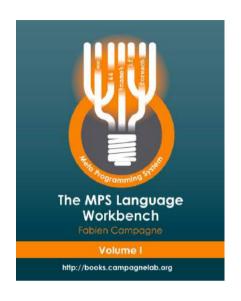
Compiler analogy

OMG/MOF Perspective

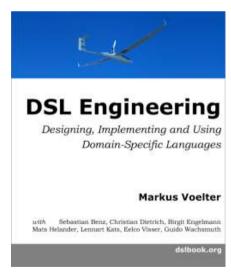
SIEMENS

BOSCH

Belastingdienst



jetbrains.com/mps


Thank you for your attention

Books

http://books.campagnelab.org

http://dslbook.org

https://www.jetbrains.com/mps/publications