JetBrains MPS

Create a programming language that the whole company can understand

Software Engineering Conference Russia October 2017, St. Petersburg

Artem Tikhomirov

Domain Specific Languages

- A DSL is a focused, processable language for describing a specific concern when building a system in a specific domain
- The abstractions and notations used are natural/suitable for the stakeholders who specify that particular concern.

Math

$$
\begin{gathered}
2 \cos z=\left(1+\frac{\sqrt{-1} z}{\infty}\right)^{\infty}+\left(1-\frac{\sqrt{-1} z}{\infty}\right)^{\infty}=e^{\sqrt{-1} z}+e^{-\sqrt{-1} z} \\
\Psi(x)=\sum_{k=0}^{\infty} \frac{\cos \left(3^{k} x\right)}{k!} \\
\int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y) . \\
\sum_{1 \leqslant k \leqslant n} f\left(z\left(t_{k}\right)\right)\left(z\left(t_{k}\right)-z\left(t_{k-1}\right)\right) .
\end{gathered}
$$

How come?

DSLs? Who cares?

You! DSLs are ubiquitous!

Buisness Processes

- Health and medicine
- Stakeholder integration, Scalable Business, Document Generation + Certification
- Finance
- Precise Specification and Implementation of Insurance Products („Rules")
- Government
- Changing Regulations, Fast Implementation, End User Empowerment
- Automotive
- Code Complexity, Frameworks (Autosar), Product Lines
- Aerospace
- Reduction of Accidental Complexity in Code, Process Conformance (Docs)
- Robotics
- A powerful language and IDE for existing frameworks (Industry Robots, ROS)
- Embedded software
- Multi-Paradigm Programming, not just Simulink and C
- Science
- Consistent Derived Documents

Most widely adopted DSM tool

2										$=$		\％			$\frac{\frac{1}{4}}{4}$	
1	$\begin{array}{r} \text { sathot } \\ \text { siremthe } \end{array}$				$\begin{aligned} & \text { Priect } \\ & \text { dotune } \end{aligned}$	prman	Sthent Losichen	$1.20-1.4$				3				
4	4 I	d00009	\dagger_{10}	4000	purump	0unow	［47\％		2.71							
5	Pm	0，6035	Plen	0，p131	Doripmine	3857		MH｜t－4］	227							
6		1922	$\begin{gathered} \text { Letone } \\ \text { [rill } \end{gathered}$	2120	BaI^{1}	7111.542		M，［17－H＝	2512		1	thet				
7					d ${ }^{\text {a }}$	23.10		mity［at］	190							
1											Whin inthetlange				11831	
－ 7	Wermitit］	0，45	$\mathrm{b}_{\mathrm{w}}[\operatorname{lin} 1$	4	$\mathrm{b}_{\text {rer［in］}}$	50		Fiputral Ampucalculationet							A－［im $\left.{ }^{3}\right]$	10．03
10	WL［1／TH］	0.4	$\mathrm{h} \backslash \mathrm{In}]$	27	－［in］	1		T［thlph	1422	$\underline{4} 4 \underline{4}]$	21.60				Mt．ansl］	1724.00
11	Hencth［f］	32	4 ［in！	E4	a［in！	O47		A，$\left\|\operatorname{in}^{2}\right\|$	41 3	ITin｜	27.39				B4，［k－14］	4－4， 15
12	Clemp cover \qquad	3	$H_{4}\left[n^{\prime \prime}\right]$	243	Pa_{1}	－				Gerentiñ	25．50				凩碞	14H1－20
11		404		1．214	c［in］	0．57									$P_{\text {mie }}$	¢003
17		45000	$\mathrm{A}_{\mathrm{q} \text { man }}\left[1 \mathrm{n}^{4}\right]$	18.4	4	0.1727		Sefect mintiention：				if－ 4 ¢			－पiñ	14．44
15			GMy｜l｜－17	251.16				時厚	4 H				2．470		－1m］	17.22
15								［1］	3	237					4	0.00
17.															$A_{1+\left[i l n^{2}\right]}$	11.27
111															$\mathrm{A}_{4}\left[4 \mathrm{~m}^{\mathrm{A}}\right]$	24，15
15	94－5abistion															
30	MMR	Mumber of turs in it Single Harur of meiniorcint														
24		\pm		3		4		4		6		7		1		
72		Hrim	Width	intir	Wiblt	Eme	Widch		7974th	Hre	Writh	Arra	Wheth	Ara	Wintin	
21	4	dip	1410	097		87\％	－ 50	6险	414	1815	11180	171	1410	H7	1580	
24	業	631	$4{ }^{4}+0$	021	1400	131	1020	141	1119	14	134	314	1500	1 45	1670	
25	－\square^{4}	68E	7.00	1.87	180	177	1050	［181		2es	14.60	302	1580	155	1750	
38.	17	4.8	730	190	Hea	－4E	4049	H04		144	4－470	＋1］	－450	4184	1840	
27	11．	1st	$7+0$	295	＜ 59	1.14	11.39		$13+9$	478	14－30	＋40	2739	－2．8	1290	
21	－1）	7．00	7，10	－100	400	400	11.70	56	1415	6－69	18to	760	Heed	E000	1110	
3 m	W0	245	740	8.79	1040	404	12.40	419	1595	751	11 Cra	11早	3040	4011	11 ± 0	
19	H11	117	11.10	401	10ys	4 ± 5	3549	7.14	16．6	737	15.40	1094	2510	14.50	25.00	
11	［14	4.4	190	6， 3 5	1940	300	75.78	4235	4950	119	2440	3575	－580	\＄100	2920	
12	－14	＋ 40	1406	$1+89$		1449	49.58	H0／5	24.5	18400	$41 / 4 \mathrm{c}$	H1905	3416	14．90	37×8	

Too narrow view of programming?

Demo

- Language to configure voice menu for an answering maching
- Jetbrains MPS as a Rich Client Platform
- Business value is negligible
- Market share of your office assistant is small
- Health and medicine
- Stakeholder integration, Scalable Business, Document Generation + Certification
- Finance
- Precise Specification and Implementation of Insurance Products („Rules")
- Government
- Changing Regulations, Fast Implementation, End User Empowerment
- Automotive
- Code Complexity, Frameworks (Autosar), Product Lines
- Aerospace
- Reduction of Accidental Complexity in Code, Process Conformance (Docs)
- Robotics
- A powerful language and IDE for existing frameworks (Industry Robots, ROS)
- Embedded software
- Multi-Paradigm Programming, not just Simulink and C
- Science
- Consistent Derived Documents

Healthcare

Software Medical Devices Accessible to Doctors Robustness and Correctness Required

To be FDA-certified
Needs to run on multiple target platforms

- IOS
- Android
- JavaScript

Stakeholders driving the development

Product Management
Customer Service

Physicists

Installed

System Engineering

HW/ FW

HW/ FW

Domain Experts

Scanner
Model / SW

T01_Rules x T02A_Collimation T03_Rules x T03_Definitions

Focus T01

Catalogue T01_Rules imports 留 platform_Definitions

Default clinical case: <no defaultclinicalCase>

collimation tabular rule: T01 Slot plate and coll

description: this is a description text

formula: Formula with Parameter References
alias: S_{1}
description: This is a text to decribe the formula.

$$
S_{1}=\text { Reconstructed Slice Width } \star 4+\sum_{i=3}^{\text {Gantry rotation time }}\left(\frac{N_{3}}{3}\right)+(\cos (\text { Number of preped slices })+\text { Tube Voltage })
$$

tabular rule: Tube Voltage and Filtration description:

				Spectral Filtration	Tube Voltage $[\mathrm{kV}]$
$1 \diamond$	$7,8,9,10,11,12,13,14$				
$2 \diamond$	Mg	$10,11,12,13,14$			
$3 \diamond$	AgMg	12,14			

(b) tabular rule: Selectable wedge and filtration
description:

	Wedge Filter	Spectral Filtration	platform_Clinical_Cases
$1 \diamond$	f1	None	Regular, Iopogram
$2 \diamond$	f1+f2	None	Case3, Case8, Case4, Case5
$3 \diamond$	f1	Mg	Topogram, Case4, Case6
$4 \diamond$	f1+f2	Mg	Case8, Topogram, Case4, Case6, Case5
$5 \diamond$	f1	AgMg	Case9

Focus T03
Catalogue T03_Rules imports a T03_RestrictionCatalogue
Default clinical case: <no defaultClinicalCase>
tabular clinical case parameter restriction: tabCCRestriction
g.
ffected parameters: RangeExample [s]
Focus
LongConstParamList
description: This is a tabular CC restriction

	RangeExample [s]	Focus	LongConstParamList
(1) Neuro	[1 .. 13] Increment: 4	"large"	$\{3,4,5,6,7,8,345,33,333,3333,33333,3333333,333333333,3333333333,33333333,333333443,4343434,23434334343434\}$
(2) X-Care	[5 .. 13] Increment: 4	"large", "small"	\{ 3, 4, 5, 6, 7, 8, 345, 33, 333, 3333, 33333, 3333333, 333333333, 3333333333, 33333333, 333333443 \}
(3) Technical	[$1 . .5$] Increment: 4	"large", "small"	\{ 8, 33, 333, 3333, 33333, 3333333, 333333333 \}
(4) AnyNewExaminationKind	[$1 . .13$] Increment: 4	"small"	\{ $3333333443,4343434,23434334343434,4343443434343434343,300$ \}

clinical case parameter restriction: CCParamRest
clinical case: Neuro parameter: RangeExample restriction: [.. 9] Increment: 4
tabular parameter combination rule: ParamCombi
arameter for vertical dimension: 103 Clinical Cases
ffected parameters: Focus

- Allaved
\square Forbidden

When to DSL?

- Complex domain knowledge
- Painful translation of expertise from a domain specialist to a programmer
- Gap in abstraction level
- Not directly related to programming
- biology, math, insurance
- Verification, analysis, simulation.
- Classes of applications
- Software factories

Typical risks

- Language design takes effort
- Adds to the cost of the project \rightarrow need for reuse
- Language design skills
- Steep learning curve
- What goes into the language
- How to make it elegant
- Proper tooling

MPS is an open-source language workbench for DSL development

DSM isn't new

Xte ${ }_{\mathrm{N}} \mathrm{t}$
\{S\} spoofax

¥ INTENTIONAL"

MetaCase

DSLs with MPS

- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP

DSLs with MPS

- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP

Textual editing

Projectional editing

Projectional editing

Projectional editing


```
public class Gol {
    public static void main(String[] args) {
        new Gol().run();
    }
public void run() {
Rich syntaxes
        sequence<Coordinate> generation = new arraylist<Coordinate>{(4, 5), (5, 5), (6, 5)};
        for (int i = 0; i < 5; i++) {
            System.out.println("Next generation: " + generation);
            generation = nextGeneration(generation);
        }
    }
    private sequence<Coordinate> nextGeneration(sequence<Coordinate> generation) {
        set<Coordinate> candidates = new hashset<Coordinate>;
        candidates.addAll(generation);
        generation.forEach({~it => candidates.addAll(neighbors(it)); });
        set<Coordinate> nextGeneration = new hashset<Coordinate>;
        foreach c in candidates {
            if (boolean Default: dead
\begin{tabular}{|l|l|l|}
\hline & generation.contains(c) & !generation.contains(c) \\
\hline countAliveNeighbors(generation, \(\mathbf{c})<2\) & dead & dead \\
\hline countAliveNeighbors(generation, \(\mathbf{c})==2\) & alive & alive \\
\hline countAliveNeighbors(generation, \(\mathbf{c})=3\) alive & dead \\
\hline countAliveNeighbors(generation, \(\mathbf{c})>3\) & dead & \\
\hline
\end{tabular}
            nextGeneration.add(c);
            }
        }
        return nextGeneration;
    }
private sequence<Coordinate> neighbors(Coordinate cell) {
        ((cell + [ | left middle right ]) - cell).asSequence;
                            lulll
}
private int countAliveNeighbors(sequence<Coordinate> currentGeneration, Coordinate cell) {
    return neighbors(cell).intersect(currentGeneration).size;
}
```


Tabular notations

Symbolic notations

int32 sumUpIntArray(int32[] arr, int32 size) \{ return $\sum_{i=0}^{\text {size }} \operatorname{arr}[i]$; \} sumUpIntArray (function)
int32 averageIntArray(int32[] arr, int32 size) \{ return $\frac{\sum_{i=\theta}^{\text {size }} \operatorname{arr}[i]}{\text { size }}$; \} averageIntArray (function)
double midnight1(int32 a, int32 b, int32 c) \{ return $\frac{-b+\sqrt{b^{2}-4^{*} a * c}}{2^{*} a}$;
\} midnighti (function)
double midnight2(int32 a, int32 b, int32 c) \{

\} midnight2 (function)
double sumOfProductsOfLogs(int32[] arr, int32 size) \{

\} sumOfProductsOfLogs (function)

Positional notations

Rule Set Type DemoRuleSetType

Business objects
person : Person

Variables:		Parent
PRMI	: int	<no parent>
FR	: int	
NN	: int	
TT	: int	Libraries
J	: int	Standard
A3	: int	Extra
G3	: int	
ANUI	: int	
X	: int	

Rule Set Type DemoRuleSetType

Business objects
<no business objects>

Variables:
<no variables>

Libraries
<no libraries>
Parent
<no parent>

Multiple switchable notations

Combine languages

```
variables:
int x1
int x2
boolean b1
    = 20
    = true || !false
int b2 = if [ b1 then 12 else 13 ]
list<int> intList = list(1, 2, 3)
int three
    = intList.last
    = intList.where|it > 2|
    = intList.all|it > 0|
    = doWithTwoInts(:add, 1, 3)
    = [1, 2]
= tuple[0]
    = alt [ x1 < 0 && x2 > 1 g> 2
==> 30
= 10*(1 + 2)
list<int> t2
boolean allel
int surprise2
=> true
==> 12
=> [1, 2, 3]
==> 3
=> [3]
==> [3]
==> true
=>> 4
[int, int] tuple
int one
=> [1, 2]
==> 20
=>> 1
int c1
\(=\)
==> 0
    int c2
    = ==>9
```



```
int complicated
    = {
        val t1 = 10 + 20
        val t2 = t1 + 30
        t2
    }
```



```
functions:
fun add(int \(a\), int b) : int
fun doWithTwoInts((int, int \(\Rightarrow\) int) fun, int \(a\), int b) : int
fun anotherFun(option<int> i) : int
\(=a+b\)
: int
\(=\) fun.exec ( \(a, b\) )
fun giveMeAnInt()
\(=\) anotherFun(some(10))
fun getStreets(Person \(p\) )
: collection<string> = p.workedAt.offices.street
```


Parsing is the bottleneck

... of language expressiveness

- Limits the possible syntaxes
- Allows only one editable code visualization
- Complicates combining languages

DSLs with MPS

- Abstract Syntax
- Concrete Syntax
- M2M, M2T
- Semantics: Typesystem, Dataflow
- IDE integration, UI
- Tooling: build, plugins
- Evolution/migration
- Deployment: custom IDE, RCP

Code generation

Generators

Map solutions from a problem domain to an implementation domain

- Transform models
- Output models or text

Compiler analogy

Source code
Intermediate presentation

DSLs

01101
10101

Machine code

Source code

OMG/MOF Perspective

SIEMENS

fortiss

(A) BOSCH © 0 ntinental s.

Belastingdienst
itemis

jetbrains.com/mps

Thank you for your attention

Books

- http://books.campagnelab.org
- http://dslbook.org

DSL Engineering
Designing, Implementing and Using
Domain-Specific Languages

Markus Voelter
with Sebastian Benk, Christian Deetich, Birpit Engelmann
Mats Helander, Lennurt Kats, Eeloo Visser, Guido Wachsmuth
https://www.jetbrains.com/mps/publications

