О возможностях применения в вузах аутентификации на основе персональных устройств

В.В. Буслюк, Д.А. Костюк, Д.И. Кульбеда, Н.А. Терешкевич, В.А. Юхно

Классификация

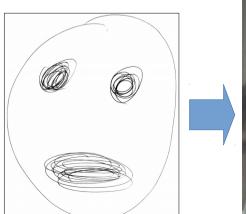
Средства аппаратной идентификации и/или аутентификации пользователей:

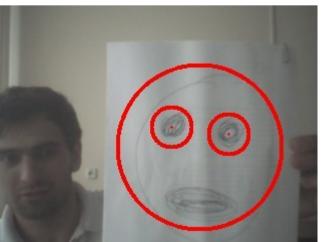
- аппаратные ключи защиты, взаимодействующие с компьютером
 - по шине USB
 - через устройство считывания контактной памяти (i-button)
 - по беспроводной передаче данных малого радиуса действия
- средства биометрии
 - сканеры отпечатков
 - какие-то другие системы распознавания (распознавание лица, рисунка радужной оболочки глаза и др.)

Аппаратная аутентификация студентов

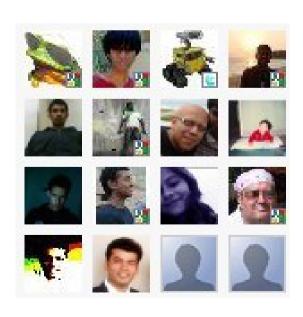
- Изначальная проблема аппаратных ключей их нужно всё время закупать и выдавать пользователям
 - Бюджет на десятки тысяч студентов несоизмерим с идеей избавить их от необходимости вбивать пароль :)
 - Вам нужен какой-то более веский повод для закупок
- Однако неотделимой частью многих студентов являются персональные гаджеты, теоретически пригодные для однозначной идентификации

PAM-модули для биометрии в GNU/Linux


- **fprint** проект, поддерживающий ряд стандартных сканеров отпечатков (как правило, встроенных в ноутбуки)
- PAM Fingerprint –для аутентификации с помощью датчика отпечатков в Arduino/Raspberry Pi
- **PAM_BFP** для USB-сканера Futronic
- pam-bioapi фреймворк, являющийся ещё одной попыткой унифицировать считыватели отпечатков в Linux, сам по себе поддерживающий подгружаемые драйвера;
- **PAM face-recognition** классический модуль, пытающийся распознать лицо пользователя с помощью веб-камеры и библиотеки OpenCV


Пара слов о PAM face recognition

• Красиво, но несерьёзно :)



РАМ-модули для аппаратной аутентификации

- **PAM-PKCS#11** классический модуль для аутентификации (опционально, также идентификации) пользователей на основе смарт-карт
 - очень серьёзный, имеет полуэкспериментальную поддержку LDAP
- pam_usb позволяет использовать USB-накопители в роли аппаратных ключей
 - известный и капризный
- pam_nfc модуль для авторизации на основе ID-тегов карт RFID
 - Рекомендован в основном для идентификации и систем многофакторной аутентификации
- pam-blue модуль для аутентификации с помощью гаджетов по протоколу bluetooth
 - в качестве ключа используется MAC-адрес Bluetooth-устройства
- **pamble** аналог для Bluetooth Low Energy, написанный одним из соавторов
 - ориентирован на авторизацию с помощью популярных фитнес-трекеров Хіаоті

Пример подключения зоопарка

```
~/proj/pam examples
 ./auth test
login: jaffee
Failed to connect: Operation now in progress
  pam usb v0.5.0
 Authentication request for user "jaffee" (auth test)
  Device "16g" is not connected.
  Access denied.
Password:
Authenticated
~/proj/pam examples
 ./auth test
login: jaffee
Failed to connect: Operation now in progress
  pam usb v0.5.0
 Authentication request for user "jaffee" (auth test)
 Device "16g" is connected (good).
 Performing one time pad verification...
 Access granted.
Authenticated
~/proj/pam examples
 ./auth test
login: jaffee
Authenticated
~/proj/pam_examples
```


2:shell*

```
2 auth sufficient pam nfc.so
 3 auth sufficient libpamble.so
 4 auth sufficient pam blue.so
 5 auth sufficient pam usb.so
 6 auth required pam unix.so nullok secure
                                              unix | utf-8 | pamconf
NORMAL RO
             auth test
                                                                              1:1
 1 requisites = ( { username = "jaffee";
                              = "C8:0F:10:3B:14:64"; }
                    btaddr
   // "C8:0F:10:3B:14:64"
NORMAL RO | example.conf
                                                unix | utf-8 | no ft
                                                                              1:1
"/etc/security/example.conf" [readonly] 5L, 144C
  general {
     timeout = 5:
 3 }
 5 jaffee = \{
    name = S950;
     bluemac = E4:2D:02:96:42:CB;
     timeout = 5;
NORMAL RO | bluescan.conf
                                                unix utf-8 no ft 11%
```

Задачи, не требующие криптостойкости...

- ...часто характерны для вузов
- аутентификация часто подменяет собой идентификацию пользователя
 - Доступ к личному расписанию
 - Выдача заданий
 - Результаты проверки работ
 - ...
 - Доступ к компьютерам учебных классов?
- в случаях, когда надёжная аутентификация реально важна, её можно затребовать в процессе работы
 - Да хоть двухфакторную авторизацию ввести для доступа к нужному сервису

Почему компьютерам учебных классов в нашем случае нечего терять:)

Ещё немного белорусских реалий

- В белорусских вузах активно используются студенческие билеты с NFC
 - это разработка БГУ
 - ...и потому она активно используется :)
 - в основе бесконтактные карты формата MIFARE Standard 4k
 - Билет хранит ФИО, номер, период действия,
 гражданство, вуз, факультет, специальность, группу и т. д.
 - Использовать их для чего-нибудь электронного очень заманчиво :)
 - возможно поэтому некоторые вузы поставили на входе турникет считывающий RFID-метки

Что можно прочесть без ключей?

** TagInfo scan (version 4.23) 2017-11-12 18:32:34 ** Report Type: External
IC INFO
IC manufacturer: NXP Semiconductors
IC type: MIFARE Classic (EV1) (MF1S70)
NDEF
No NDEF data storage present: Maximum NDEF storage size after format: 3356 bytes
EXTRA
Memory size: 4 kB * 32 sectors of 4 blocks and 8 sectors of 16 blocks * 256 blocks, with 16 bytes per block
FULL SCAN
Technologies supported: MIFARE Classic compatible ISO/IEC 14443-3 (Type A) compatible ISO/IEC 14443-2 (Type A) compatible

	# Detailed protocol information:			
	ID: 9C:D!	5:1A:25		
ATQA: 0x0600				
	SAK: 0x1	18		
	# Memory content:			
	Sector 0	(0x00)		
	[00] ???			
	[01] ???			
	[02] ???			
	[03] ???	XX:XX:XX:XX:XX:XX	::	
	(ur	nknown key)	(unknown key)	
	Sector 1	(0x01)		
	[04] ???			
	[05] ???			
	[06] ???			
	[07] ???	XX:XX:XX:XX:XX	::- XX:XX:XX:XX:XX:XX	
	(ur	nknown key)	(unknown key)	
	Sector 2	(0x02)		
	[09] ???			
	[0B] ???	XX:XX:XX:XX:XX	:: XX:XX:XX:XX:XX:XX	
	(ur	nknown key)	(unknown key)	
	Sector 3 (0x03)			

Проблемы аутентификации на основе личных гаджетов

- Радиус видимости гаджета
 - Логин пользователя вводится вручную
 - как страховка от ложных срабатываний
- Проблема с сетевыми учетными записями
 - Большинство немэйнстримных РАМ-модулей не умеют работать с LDAP
 - Частичное решение монтировать /home по сети (например, с autofs)
 - Не страшно при пониженных требованиях к безопасности
 - Частичное решение «расползание» конфигов с идентификаторами в /etc рабочих станций (Isyncd, ...)
 - Защита строится не на сокрытии, а на сложности подделки