
PROGRAMMING IN ROLE ORIENTED
CONCURRENT CONTEXTS

WITH ROCOCO
Cevat Balek

Nadia Erdoğan
İstanbul Technical University, Faculty of Computer and Informatics Engineering

SOFTWARE
ENGINEERING
CONFERENCE

RUSSIA
ST. PETERSBURG

2019

TECHNOLOGY

τέχνη
➤ tékhnē means

craftsmanship, craft or art

in ancient Greeks

➤ and emphasizes

both skill and beauty

FIRST, THERE WAS VOID
➤ In engineering or art disciplines,

still except software development,
architecture has always been about

➤ to capture VOID

➤ by defining FORM

➤ to let both the stability and
creativity happening ALIVE
within the generated space

➤ Technical details and even
measurements come later

➤ In software development, however,
we ignore the very essense of form
relying only on metrics such as
coupling and cohesion, # of lines

PATTERN LANGUAGES
➤ Christopher Alexander introduced

pattern languages in 1970s.

➤ A PATTERN — PLACE TO WAIT

➤ In places where people end up
waiting, create a situation which
makes the waiting positive.

➤ Fuse the waiting with some
other activity—newspaper,
coffee, pool tables, horseshoes;
something which draws people
in who are not simply waiting.

➤ And also the opposite: make a
place which can draw a person
waiting into a reverie; quiet; a
positive silence

Gertrud & Cope

STRUCTURE EVOLVES IN TIME
➤ TEST OF TIME: Thinking too

ahead in time and hardening the
structure too early based on
immature decisions without
considering time will destroy the
ALIVENESS of the architecture

➤ Timeless thinking is completely
different and the very basic idea
is the awareness of radically
different rates of change of
different parts of a solution

➤ Only then, we start to begin
understanding the effects and
importance of FORM & VOID

“… several acts of building, each one done
to repair and magnify the product of the
previous acts, will slowly generate a larger
and more complex whole than any single
act can generate

-Christopher Alexander

PARADIGM SHIFT
➤ As with other Newtonian and

engineering methods, software or
even computing itself has born
from male principle in charge

➤ crisp determination

➤ command and control, etc.

➤ It is not so wrong to state that
even the very first idea about the
possibility of computers originated
in military researches in 1930s

➤ Female principle, which is ignored
for centuries is gaining importance
now disguised as systems thinking

➤ awareness of environment

➤ feelings > intellect, etc.

LOOK AT THE KEYS IN YOUR KEYBOARD: AREN’T THEY MILITARY?
➤ command

➤ enter

➤ return (to base)

➤ control

➤ escape

➤ shift? (yes, even that)

➤ Can we blame the military for dominating the rest of the industry?

➤ However, this is not enough to explain what’s really going on here

➤ Root cause of the problem is the way we think, our thought process

➤ We ignored female principle everywhere: in education, at work, …

SYSTEMS THINKING: SCIENCE FOR LIVING SYSTEMS

➤ We don’t scare to look at really complex problems any more

➤ We are aware of them and develop methods to deal with them

➤ This is just a little bit off the road on our old way of thinking

SO, WHAT IS

THE
KEY:

CO-EXISTANCE

Every living system co-exits
in a complex web of relations

CAN YOU SAY SOFTWARE IS NOT A LIVING SYSTEM?

➤ Do you think Von-Neumann architecture will survive?

➤ Well, it is the foundation of all computing so far

➤ It won’t be completely forgotten but it may fade away

➤ WERE THERE AN ALTERNATIVE?

“In computer terms, Smalltalk is a recursion on the notion of
computer itself. Instead of dividing “computer stuff” into things
each less strong than the whole -like data structures, procedures
and functions which are the usual paraphernalia of programming
languages- each Smalltalk object is a recursion on the entire
possibilities of the computer. Thus its semantics are a bit like
having thousands and thousands of computers all hooked
together by a very fast network.

-Alan Kay

OO AS WE KNOW IT (NOW)
➤ Although there are methods

(procedures) like Start, Stop
and Accelerate, car is depicted
from an angle of view which
highlights data perspective

➤ This view is too narcissist

➤ Interaction with environment
(such as road) is not designed

➤ There is no where to save the
collaborative code in the source

➤ when a human sits on the
driver seat (as the driver)
how the car collaborates?

CLASS ORIENTED IS NOT OBJECT ORIENTED (NOT EVEN CLOSE)
➤ Systems thinker says that a system is more than the sum of its parts

➤ Is it enough to state that a car has 1 steering wheel and 4 tyres, etc. ?

➤ Defining only the structure is not enough to design a living system

➤ Interactions should also be defined in bounding contexts (recursively)

THIS IS THE VISION: OBJECTS AND SCRIPTS ARE HAND IN HAND

DATA-CONTEXT-INTERACTION
➤ DCI decouples inheritance

mechanism from specifying the
behavior in code and restricts the
use of classes to only where they
are needed and effective most:
DATA

➤ DCI is a natural extension to object
orientation to include use cases and
the like directly in the code which
are thought so far only as analysis
and even test artifacts

➤

DCI EXECUTION MODEL
➤ DCI aligns well with end user

➤ DCI frees the data objects

➤ DCI allows contextual codes
where the objects collaborate

➤ All the code to orchestrate the
objects in a context is in the
contextual code, they do not
need to be inside the objects

➤ DCI execution model is single-
threaded, is NOT concurrent

➤ ROCOCO addresses this issue
by applying SCOOP technique

SCOOP
➤ Originated in Eiffel language

➤ SCOOP = Simple Concurrent
Object Oriented Programming

ROCOCO =
DCI + SCOOP

ROCOCO applies
SCOOP to enable

concurrency in a
DCI way of role

orientation

ROCOCO is named after a late Baroque ornamental and
theatrical style to create surprise and the illusion of

motion and drama, and technically means
Role Oriented Concurrent Contexts

ROCOCO USAGE EXAMPLE
➤ from, to and money objects

are data objects

➤ these data objects are being
used in MoneyTransfer context
which knows all the actions
and information about bank
transfer, commissions, etc.

➤ @separate means that these
objects and the context may
all live in separate threads

➤ @RolePlayers maps each role
to the data object which will
play that role in the context

ROCOCO CONTEXT
➤ In ROCOCO, a context is a class

annotated with @Context

➤ The main responsibility of a
context is to bring data objects
together that will interact as
role players within the context

➤ Good contexts are stateless, so a
warning can be given if there is
any field in the context which is
not annotated with @RoleMap

➤ Context is constructed in an
atomic call, once established,
the role players do not change

ROCOCO TRANSFORMATION
➤ DCI to OOwR (object oriented code

with roles) transformation processes
only DCI annotations and leaves
SCOOP annotations intact.

➤ DCI code is reduced to OOwR code
so that OOwR to ROCOCO
transformation is possible through
SCOOP which is designed for OO
may be applied later.

➤ After this stage, transformed
(expanded) OOwR source code will
include all information about role
oriented aspects of the computation

➤ OOwR to ROCOCO transformation
processes the SCOOP related
annotations left intact by the DCI to
OOwR transformation above

➤ ROCOCO uses eclipse JAVA Development Toolkit
(eclipse JDT) to perform the source code to source
code transformation necessary and JSCOOP (an
experimental port of SCOOP to JAVA)

ROCOCO
BENEFITS

Relaxes the single-threaded constraint in DCI
so that collaboration code remains readable

IDE understands the programmer

Correctness proofs become easier

Complete independence of objects from
interfaces via data method adapters

paves a way to let the compiler decide
optimally whether to run the routine

concurrently or not

Thank you for listening …
Cevat Balek

cevatbalek@gmail.com

mailto:cevatbalek@gmail.com

