[

SRR RN B | s

- -
. o (3
. - -
& <
-
-
aR
!

ah Vhphmbthha .]
B! ! | | .

A\

ENTED
CURRENT CONTEXTS

... WITH ROCOCO

Cevat Balek

_ Nadia Erdogan
Istanbul Technical University, Faculty of Computer and Informatics Engineering

RING
CONFERE
NCE

ST. PETERSBURG
2019

TECHNOLOGY

» In Ancient Greeks

tekhné means
craftsmanship, craft or art

» emphasizes both skill and
beauty

VOID

FIRST, THERE

000

M&Mi@“grt disciplines,

still except software development,
architecture has always been
about

» to capture VOID
» by defining FORM

» to let both the stability and
creativity happening ALIVE
within the generated space

» Technical details and even
measurements come later

» In software development, however,
we ignhore the very essense of form
relying only on metrics such as
coupling and cohesion, # of lines

PATTERN

000

LAIN(QHLJA%)@(ErarOduced

pattern languages in 1970s.
» A PATTERN — PLACE TO WAIT

» In places where people end up
waiting, create a situation which
makes the waiting positive.

» Fuse the waiting with some other
activity—newspaper, coffee, pool
tables, horseshoes; something

activities where people meet within earshot Which draws people in who are

if some signal ot simply waiting.

» And also the opposite: make a
place which can draw a person
waiting into a reverie; quiet; a
positive silence

quict corners for private waiting

Gertrud & Cope

STRUCTURE

000

EMGI bV Nl E

ahead Iin time and hardening the
structure too early based on
Immature decisions without
considering time will destroy the
ALIVENESS of the architecture

» Timeless thinking is completely
different and the very basic idea
IS the awareness of radically
different rates of change of
different parts of a solution

» Only then, we start to begin
understanding the effects and
importance of FORM & VOID

... several acts of building, each one done
to repair and magnify the product of the
previous acts, will slowly generate a larger
and more complex whole than any single
act can generate

-Christopher Alexander

L
-

' v
——— T e
E— ——
-® o
o
2
-~

SERGY M CREDT <
o ——
L

' ——
- -

~
~

AR,
e it

-

-

oy

- e
e

S
—

e e
~ . -~ - -
. - "
PO DS PSS EDC I W———

Cad

TSRS 4 N
Sl Lot L SN

vl'l.h&\l : h.. V.Nﬂ.- -y \

.

———

PARADIGM SHIFT

» As with other Newtonian and
engineering methods, software or
even computing itself has born
from male principle in charge

» Crisp determination
» command and control, etc.

» |t IS not so wrong to state that even
the very first idea about the
possibility of computers originated
In military researches in 1930s

» Female principle, which is ignored
for centuries is gaining importance
now disguised as systems thinking

» awareness of environment

» feelings > intellect, etc.

LOOK AT THE KEYS IN YOUR

KEXRBAARD: ARENITJHEY THETARYP
LLLLL -

» return (to base)

refurn
control " | P S - *
escape | 7 . / shift

) 2 |
shift? (yes, even that) e : I
o command option @ N
Can we blame the military for-gtlem ' “I'ﬁ'd'uﬁ.@

However, this is not enough to explain what's really going on here

Yy Y Y Y VY Y

Root cause of the problem is the way we think, our thought process

» \We ignored female principle everywhere: in education, at work, ...

SYSTEMS THINKING: SCIENCE FOR

LI\MJ I&)Qt §¥§J— IEolthﬁreally complex problems any more

» We are aware of them and develop methods to deal with them

» This Is just a little bit off the road on our old way of thinking

@O — 0

SO, WHAT IS

THE
KEY:

CO-
EXISTANCE

Every living system co-
exits in a complex web of
relations

CAN YOU SAY SOFTWARE IS NOT A

00

LI%INQhﬁY\/%I@MZnn architecture will survive?

» Well, it Is the foundation of all computing so far

» |t won't be completely forgotten but it may fade away
» WERE THERE AN ALTERNATIVE?

Program
Bus

-~

-~ | ‘}:\— “'

o

7
\J !"{

o

s

In computer terms, Smalltalk is a recursion on the notion of
computer itself. Instead of dividing “computer stuff’ into things
each less strong than the whole -like data structures, procedures
and functions which are the usual paraphernalia of programming
anguages- each Smalltalk object is a recursion on the entire
nossibilities of the computer. Thus its semantics are a bit like
naving thousands and thousands of computers all hooked

together by a very fast network.

-Alan Kay

public class Car
private string color

. . P4 \N
private string _model h
'0"=8t 00 AS WE KNOW
private string fuelType

publ-i:: void Start 4 GER\ LRI(]NIQW’) are methods

.O O (procedures) like Start, Stop
public void Stop and Accelerate, car is depicted
- from an angle of view which

highlights data perspective

public void Accelerate ﬁ
N » This view is too narcissist

Car class » Interaction with environment
’G‘ (such as road) is not designed
O™=0 .
Car » There Is no where to save the
Objects / ‘ \ collaborative code in the source

s, i,

E\ » when a human sits on the
(@) (@) driver seat (as the driver)

how the car collaborates?

Green Red Blue
Ford Toyota Volkkswagon
Mustang Prius Golf

Gasoline Electricty Deise|

CLASS ORIENTED IS NOT OBJECT

D@lﬁN%ﬁD&N@lﬁMEN&LQ@@ of its parts

» |S It enough to state that a car has 1 steering wheel and 4 tyres, etc. ?

Objeck Oriuec
» Defining only the structure is not enough to design a living system

» |nteractions should also be defined in bounding contexts (recursively)

THIS IS THE VISION: OBJECTS AND

® © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O 0 O O 0 O O O O O O 0 O O O O O O O O 0 O O 0 O 0 O O 0 O O O 0 O 0 O O O O 0 O O O O 0 O 0 O O O O 0 O 0 O O 0 O 0 O 0 O O 0 O 0 O 0 0 O O O 0 0 0 0O 0 0 0 0 0 0 o

—_— =

\ ::5, @ =0 @ Fleur -1
© 4 scrists
! Fleur Scriptl en pause
o 0 ! Fleur script vide

——— f'@ I:RE-:hercherJ
o=— |

© 4t=a

L

L

! Fleur joue son #r.ruah
@ t Fleur avance de :5 (3
r’E @ [] [Fleur|Seriptl E @ﬂ' ! [Fleur tourne de 35
Fleur tourne de _ 5 Fleur, x . 7208

Tezt Fleur. couleur vue couleur Plewr, ¥ .¢31EI 0

Oui Fleur avance de 5 \ AL . v0) lil

Hoti Fleur avance de #—Eh @ # tests] :

Fleur. barrieres faux s

Fleur. chevauche Fleur
Fleur. couleur vue
Fleur. est sous souris wrai

Fleur. intersection avec Fleur

Fleur. isOverColor llcouleur

Fleur. touche un Fleur

Mavigateur

I: |dent||\ request withdrawal
: Cashier
Interface 3: validate and withdraw

O

: Bank sWithdrawal : Account
Customer »
4: authorize dispense
5: dispense money :
:Dispenser
.“..II-lllllIl-..... OLO
: mental _—~_command
kS| model A
Conceptual Maestro
schema
Triggerlinteraction
realize Context
. Interaction
Class attributes Netwo,,inode
+ own methods | ;hiect role
+ role methods $—=thods Role
0 1

! Instantiate class to object Bind role jto object

e ARG R ARG RIS . R -

:' data objects

DATA-CONTEXT-

om specifying the

" Hde and restricts the

4 to only where they
B d effective most:

» DCI Is a natural extension to object
orientation to include use cases and
the like directly in the code which
are thought so far only as analysis
artifacts

['_xCustomer Bank FromAccount ToAccount
| | T T
| I I I
1 I 1
I transfer (! ! !
| fromAccount, [| [
I toAccount, i transfer ()' [
: amount) I toAccount, . >: .
1
i ' amount) " deposit ;
[| [(amount) |

P e

Interface-1 0 o
.
~

Bt L€ e BT T -t.'_.

7T BankTransferCollab. 77

Interface-2 £ - :
% Collab.-2‘/ N
\ Al
Interface-3 (transfer..\}._ : FromAccount ToAgcount !
~.‘.\~ ' l"

\\\ ')

| 5
~~~~~ . o* o
il e
Data objects O | @
I
O o ! Account5432

I
1 RoleMethod injection
O O + Role binding

Account1234
heap

receiver object

instance variables [ some object]

ontext stack

—

*

some object

main stack

activation records
receiver ® [1.

temg. variables - (RIRIEHEES

DCI EXECUTION

NIQQi&LWeII with end user

» DCI frees the data objects

» DCI allows contextual codes
where the objects collaborate

» All the code to orchestrate the
objects in a context is in the
contextual code, they do not
need to be coded in the objects

» DCI execution model does not
address multi-thread

» ROCOCO addresses this issue
by applying SCOOP principles



» Originated in Eiffel language

class CLIENT feature
messages: LIST |STRING]

downloader: separate DOWNLOADER -- Downloading engine

viewer:. separate VIEWER

-- Email messages received

-- Message viewing engine

end
essazes g Concurrent:
essa — three separate
downloader re ionsp
viewer W) °

(CLIENT)

Region 1

Region 2

Y

(VIEWER)

(DOWNLOADER)

» Applies Regign By Contract to
denote await conditions



DCI +
SCOO

ROCOCO applies
SCOOQOP to enable
concurrency in a

DCI way of role

.......................... arientaton
ROCOCO is also a late Barogue
ornamental and theatrical style to
create surprise and the illusion of
motion and drama




(@separate Account from = new Account(IBAN_from);

(@separate Account to = new Account(IBAN to); R O C O C O U SAG E

(@separate Money money = new Money(50); e et
@RolePlayers ( E%A Mfgcl-n%ney objects
mappings = { are data objects
“Source = from”,
“Destination = t0”, » these data objects are being
: CRARRRE: ~uoney used in MoneyTransfer
adapters = { “Source.debit = from.deposit(banknote);” } context which knows all the
) actions and information about

(@Separate Money Transfer moneyTransfer =
new MoneyTransfer();

bank transfer, commissions,

etc.
@Context public class MoneyTransfer { > @Separate means that these
@Await("!s.isBusy() && !d.isBusy() && 'b.isBusy()") objects may live in separate
(@Interaction public void maestro ( threads (Concurrency regions)
(@Separate Source s,
i@oeparsiy Destination d, » @RolePlayers maps each role
(@Separate Banknote b) { : : :
s.debit(b); d.credit(b); to the data ObjeCt which will
} play that role in the context

T



ROCOCO

@CONtEXt e
public class MoneyTransfer { Q%L;E@%-E :
(@separate (@RoleMap public Source source; : ontextis a
(@separate (@RoleMap public Destination destination; class annotated with @Context

(@separate (@RoleMap public Banknote banknote; : e
: A » The main responsibility of a

! context Is to bring data objects
together that will interact as role
@Context players within the context

public class MoneyTransfer {

(@separate (@RoleMap public Source source; » Good contexts are stateless, so

a warning can be given if there

@Role IS any field in the context which
private class Source { IS not annotated with @RoleMap
(@DataMethod _ _
public void debit(Banknote banknote) { } » Context is constructed in an
@RoleMethod atomic call, once established,
public double commission(Banknote banknote) { the role players do not change
return banknote.getAmount() * 0.08;
b
b

;



public class MoneyTransfer asCalledFrom Client Linel9 {
public Account source;
public Account destination;
public Money banknote;

ROCOCO

I 530 Dbl d i Mk Lol

@Await("'s.isBusy() && !d.isBusy() && !b.isBusy()") {h roles) transformation processes
public void maestro ( DCI annotations and leaves

(@Separate Account s,
(@Separate Account d,
(@Separate Money b) {
s.debit(b); d.credit(b);
h
| .
y

private class Source {
(@DataMethod public void debit(Banknote banknote) {
deposit(banknote); // wrapped from client line 19

j

» ROCOCO uses eclipse JAVA
Development Toolkit to perform
source code to source code
transformation and JSCOOP (an

experimental port of SCOOP to JAVA)

SCOOP annotations intact. With this
transformation, the DCI code will be
reduced to OOwWR code so that
OOwWR to ROCOCO transformation is
possible through SCOOP which is
designed for OO may be applied
later. After this stage, transformed
(expanded) OOwWR source code will
iInclude all information about role
oriented aspects of the computation.

OOWR to ROCOCO transformation
processes the SCOOP related
annotations left intact by the DCI to
OOWwR transformation described
above.



ROCOCO
BENEFITS

Allows DCI in concurrent settings:
an(ljmatlon/collaboratlon IS a readable
code

IDE understands the programmer
Correctness proofs becomes easier

Complete independence of objects
from interfaces via data method
adapters

""""" paves a way to let the compiler
decide optimally whether to run the
routine concurrently or not




.

1.45'% MR _ews

R

- e

tening

S

lI

Thank you for

.COM

Cevat Balek

cevatbalek@gma



mailto:cevatbalek@gmail.com

