
An Agile Software Engineering Method
to Design Blockchain Applications

Michele Marchesi, Lodovica Marchesi, Roberto Tonelli
University of Cagliari

Software Engineering Conference Russia 2018
October 12-13

Moscow

2

Blockchain
•The Blockchain was a technology whose first application was to
run the Bitcoin cryptocurrency in a decentralized and secure way

• It is a distributed data structure characterized by:
–data redundancy
–check of transaction requirements before validation
–recording of transactions in sequentially ordered blocks
–ownership based on public-key cryptography
–immutability
–a transaction scripting language, associated to the transactions –
the corresponding program is executed by all nodes

3

Smart Contracts (SC)
• The software associated to transactions
and running on the Blockchain

• The SC run in every node

• All executions must produce the
same result

• The calls and the storage modifications
are recorded

• A SC cannot access any device or
network

• The figure outlines the Ethereum
approach for SC

4

Software Engineering for dApps
• In the past few years, there has been a strong increase of interest
in cryptocurrencies, in Blockchain applications and in Smart
Contracts

• This led to a huge inflow of money and of startup ideas

• Many projects were born and quickly developed software

• The scenario is that of a rush to be the first on the market,
fearing of missing out

• This unruled and hurried software development does not assure
neither software quality, nor that the basic concepts of software
engineering are taken into account

5

Goals
• We propose a software development process to:
− Gather the requirements
−Analyze, Design
−Develop, Test
−Deploy Blockchain applications

• The process is based on Agile practices

• It makes also use of more formal notations, modified to
represent specific concepts found in Blockchain
development

6

BOS Design Method — Main Steps
• Steps 1-3: Gather requirements (without assuming

the use of a blockchain)

• Step 4: Divide the system in two subsystems:

 Step 5: the blockchain system (SC)
 Step 6: the external system (server, client, GUI)

• Step 7: Test the two subsystems

• Step 8: Integrate and deploy

7

Steps 1 and 2
1.Define in one or two sentences the goal of the

system. For instance: To create a simple crowfunding
system, managing various projects that can be financed
using Ethers

2.Identify the actors (human and external
systems/devices). For instance:
1.System Administrator: s/he accepts the projects and their

property; takes action in the case of problems

2.Fund Raiser: they give the crowfunding project data, including
the address receiving the money

3.Crowfunder: they finance projects sending Ethers

8

Step 3 – User Stories
•Write the system requirements in term of user
stories or features:

 Create System: The Administrator creates the contract,
that register his address

 Start Campaign: A Fund Raiser activates a CF project,
giving its data: soft and hard cap, end date, address
where to send money to

 Cash Campaign: The Fund Raiser, if the time of the CF
has expired, or if the hard cap has been reached, cashes
out the Ethers given to the project

9

Step 3 – User Stories

Delete Campaign: The Fund Raiser cancels the
project; the Ethers are given back to Crowfunders

End Campaign: The Administrator, or the Fund
Raiser, if the time of the CF has expired and the
soft cap has not been reached, ends the project;
the Ethers are given back to Crowfunders

Finance a Project: a Crowfunders sends Ethers to a
project

10

UML Use Case
Diagram
(User Stories)

11

Step 4 - Divide into SC system and external
system

• Divide the system in two separate systems:
−The Blockchain system, composed by the SCs
−The external system that interacts with the first, sending
transactions to the Blockchain and receiving the results

• The SC system interacts with the outside exclusively through
blockchain transactions.
−It has actors, recognized by the respective address
−It can use libraries and external contracts
−It can generate transactions to other contracts, or can send Ethers

• The client / server system is the one described in the previous steps
−But it adds the interface to the SCs

12

A Typical dApp Architecture

13

Step 5 - Design of the
SC subsystem

•Redefine the actors and the user stories

•Define the decomposition in SCs (one or more)

•For each SC, define the structure, the flow of
messages and Ether transfers, the state diagram
(if needed), the data structure, the external
interface (ABI), the events, the modifiers...

•Define the tests and the security assessment
practices

14

Step 6 – Design of the
 external subsystem

• Redefine the actors and the user stories, adding the new
(passive) actors represented by the SCs

• Decide the architecture of the system

• Define the decomposition in modules, and their
interfaces

• Define the User Interface of the relevant modules

• Perform a detailed design of the subsystem

• Perform a security assessment

15

BOS Design Method – Steps 7 and 8
7. Code and test the systems; in parallel:

−Write and test the SCs, starting from their data
structure and functions;

−Implement the USs of external subsystem with an agile
approach (Scrum or Kanban);

8. Integrate, test and deploy the overall system.

16

A Case Study: Corporate
voting management
1. GOAL OF THE SYSTEM:

•To manage in a simplified way voting in corporate
assemblies

2. IDENTIFY ACTORS:

•Corporate administrator: manages the system,
manages the shareholders and their shares, convenes
assemblies, calls for votings

•Shareholder: participates to assemblies, casts his votes,
delegates participation to assemblies

17

Step 3. User
Stories

18

Step 3. The data
structure
representing this
system
shown using a
UML class
diagram

19

Step 4. Divide the system
•In this case the subdivision is trivial, because all US make use of Smart
Contracts.
•The DApp subsystem US are the same. Each includes the Blockchain as
further Actor.
•The Blockchain subsystem US are the same. The identifiers of the Actors
are their unique adresses:

−Corporate administrator: her/his address is at first the address that creates
the contract, and then possibily a further address set by the Change
administrator US

−Shareholder: their addresses are specified and managed by the Administrator.

20

Step 5. Design of the SC
subsystem

•The system is quite simple, so a single SC is the best option
•Following a SC standard, the “Ownable” standard contract is used to manage
the ownership of the SC, held by the Administrator, who creates the SC

contract Ownable {
 address public _owner;
 modifier onlyOwner() {

 require(msg.sender == _owner);
 _;

 }
 constructor() public {
 _owner = msg.sender;
 . . .
}

21

Step 5. Design of
the SC Data
structure of the SC
shown using a
modified UML class
diagram

22

UML State diagram of a
Shareholder

• showing the possible ways of her/his participation to an assembly:

23

Step 5. The Dynamic model
 of the SC subsystem

•Modifiers:
−onlyOwner()
−onlyShareholder()
−onlyOwnerOrShareholder()
−assemblyRunning() – enforces that there is actually
an assembly running at the time of the call
−assemblyNotRunning() – enforces that there is no
assembly running at the time of the call

•Functions:
−AndSoOnAndSoOn...()

24

Step 6. Design of the external
 subsystem (ESS)
•Actors of the ESS:
−Administrator
−Shareholder
−SC subsystem

•Architecture:
−A responsive application for managing the system
−An app for the shareholders (voting and delegating)

•The app GUIs are designed
•The apps are developed using the Ethereum API
web3.js library and a dev environment of choice

25

Steps 7 and 8: coding, testing,
deploying the system

•Here we give some details of SC security assessment

•We apply a checklist to SC design and code, to assess
their security against known attacks:
−Minimize external calls and check for reentrancy
−Follow the "checks-effects-interactions" pattern
−Check the proper use of assert(), require(), revert()
−Check if there are ways to make the SC permanently stuck
due to gas consumption above the limit
−Have some way to update the contract in the case some
bugs will be discovered
−. . .

26

Conclusions
•Despite the huge effort presently ongoing in developing DApps,
software engineering practices are still poorly applied

•A sound software engineering approach might greatly help in
overcoming many of the issues plaguing blockchain
development:
−Security issues
−Software quality and maintenance issues

•Researchers in software engineering have a big opportunity to
start studying a field that is very important and brand new

•Blockchain firms, including ICO startups, could develop a
competitive advantage using SE practices since the beginning

27

Contact Me

•Michele Marchesi

•Email: marchesi@unica.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27

