Out-of-tree kernel modules: some thoughts

September 23, 2017

/16

Out-of-tree modules

— Modules ported to a different kernel version
— Backporting, forward portting of removed staging drivers
— Externally developed modules
— Intel, Qlogic networking drivers; ZFS on Linux, OpenAFS, ...

2/16

Driver development

— There are several good books that cover driver development
for Linux

— One of the latest and greatest is " Linux Device Drivers, 3rd
Edition”

3/16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

— There are several good books that cover driver development
for Linux

— One of the latest and greatest is " Linux Device Drivers, 3rd
Edition”

— Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

3/16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

— There are several good books that cover driver development
for Linux

One of the latest and greatest is " Linux Device Drivers, 3rd
Edition”

Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

3/16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

— There are several good books that cover driver development
for Linux

One of the latest and greatest is " Linux Device Drivers, 3rd
Edition”

Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

So the only actual reference is the Linux source code

3/16

https://www.reddit.com/r/linux/comments/61q6y8/

Porting issues

— Linux doesn't have stable APIs (and internal ABlIs, for that
matter)

— Luckily, most of the changes either introduce new APIs or are
syntactically incompatible with the existing code

4/16

Support for multiple kernel versions

— There are LINUX_KERNEL_VERSION and LINUX_VERSION_CODE
macros

16

Support for multiple kernel versions

— There are LINUX_KERNEL_VERSION and LINUX_VERSION_CODE
macros

— Mostly useless

16

Support for multiple kernel versions

One can implement various configure checks...

CR_CHECK_KERNEL_SYMBOL (SYMBOL, [INCLUDES] , [TEMPLATE_TEXT])
Wrapper to invoke CR_CHECK_KERNEL_COMPILE for a given symbol
AC_DEFUN ([CR_CHECK_KERNEL_SYMBOL], [
CR_CHECK_KERNEL_COMPILE([$1], [$2], [
int x = sizeof (&$1);
1,083 D

/16

Support for multiple kernel versions

One can implement various configure checks...

CR_CHECK_KERNEL_SYMBOL (SYMBOL, [INCLUDES] , [TEMPLATE_TEXT])
Wrapper to invoke CR_CHECK_KERNEL_COMPILE for a given symbol
AC_DEFUN ([CR_CHECK_KERNEL_SYMBOL], [
CR_CHECK_KERNEL_COMPILE([$1], [$2], [
int x = sizeof (&$1);
1,083 D

CR_CHECK_KERNEL_CALL_NARGS (SYMBOL, INCLUDES, ARGS1[,ARGS2. . .])
See 1if each given SYMBOL(ARGSn) will compile
Defines HAVE_ [N]_ARG_ [uppercase(£1)] for N equal to argument
AC_DEFUN ([CR_CHECK_KERNEL_CALL_NARGS], [
m4_if (m4_eval([$# >= 31),1,[
pushdef ([cr_nargs], [len(patsubst ([$3]1,[[~,]1+,7]1,[@1))])
CR_CHECK_KERNEL_CALL_FULL(cr_nargs[-arg $11,[$11,[$2],[],[$3],
[[Define to 1 if the kernel has Jcr_nargs([-arg $1().11)
popdef ([cr_nargs])])
m4_if (m4_eval ([$# > 3]),1,[$0([$1], [$2],
m4_shift(m4_shift(m4_shift($@))))])dnl tail recursion
D

From BLCR's acinclude.m.

/16

Support for multiple kernel versions

...or perform various trickery.
/%

* "[kernel] list: fix order of arguments for hlist_add_after(_rcu)"
* (commit 1d023284c31a) introduced new hlist_add_behind function,

* which fixes unnatural argument order used in hlist_add_after function.

*/

#ifndef hlist_add_behind

define hlist_add_behind(a, b) hlist_add_after(b, a)
#endif

16

Support for multiple kernel versions

...or perform various trickery.
/%
* "[kernel] list: fix order of arguments for hlist_add_after(_rcu)"
* (commit 1d023284c31a) introduced new hlist_add_behind function,
* which fixes unnatural argument order used in hlist_add_after function.
*/
#ifndef hlist_add_behind
define hlist_add_behind(a, b) hlist_add_after(b, a)
#endif

#1f LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0)
/* Added in 786e2288 */
/* Working around SLES 11 where it is defined despite 3.0 kernel version */
#define pci_pcie_type(dev) my_pci_pcie_type(dev)
static inline int my_pci_pcie_type(struct pci_dev *dev)
{
return (pcie_caps_reg(dev) & PCI_EXP_FLAGS_TYPE) >> 4;
}
#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0) */

/16

Building

— Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules

16

Building

— Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules

— Not much more than that

8/16

Building

— Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules
— Not much more than that

Two useful pieces of information:

— Kbuild has rather poor support for out-of-tree building: it
can't use generated Makefile (which is put in the build
directory by config.status), for example

— GCC version used for module building must match GCC
version used for kernel building; most distributions specify it
explicitly in kernel make files, but SuSE doesn’t

8/16

Example Makefile

M 7= .

SRC 7= $(filter-out %.mod.c,$(subst $M)/,,$(wildcard $(M)/*.c)))

HDR 7= $(subst $(M),,$(wildcard $(M)/*.h))
0BJ := $(patsubst %.c,%.0,$(SRC))

-include config.mk

obj-m += $(MODULE_NAME) .o
$ (MODULE_NAME) -y := $(0BJ)

all: module
module: $(MODULE_NAME) .ko

$ (MODULE_NAME) .ko: $(SRC) $(HDR)
$ (MAKE) -C $(KERNELDIR) M=$(MODULE_SRC_DIR) modules

.PHONY: all module

16

Packaging

» No established way to package out-of-tree modules (Fedora

just ignores their existence in Packaging Guidelines!, for
example)

> Users can build their own kernels (with different internal APls

and ABIs), which makes distribution of pre-built kernel
modules impossible.

1" Fedora strongly encourages kernel module packagers to submit their code
into the upstream kernel tree”, they say

10/16

dkms

» Provides an infrastructure for managing out-of-tree modules

» Support building of modules, distribution tarballs, RPMs,
DEBs

» De-facto standard for maintaining out-of-tree kernel modules
in most community distributions.

uninstall

v |

Not |@dd [Added]|build [Built |install[|nstalled

) —_— —_— —_—
in tree state state state

remove

Figure: State machine for a driver managed by DKMS

11/16

dkms: issues

» Assumes (direct) control. Otherwise:
— We have a makefile...

12 /16

dkms: issues

» Assumes (direct) control. Otherwise:

— We have a makefile...
— ...that is embedded by Kbuild in order to get list of objects to
build...

12 /16

dkms: issues

» Assumes (direct) control. Otherwise:

— We have a makefile...

— ...that is embedded by Kbuild in order to get list of objects to
build...

— ...and has rules for calling dkms build...

12 /16

dkms: issues

» Assumes (direct) control. Otherwise:

— We have a makefile...

— ...that is embedded by Kbuild in order to get list of objects to
build...

— ...and has rules for calling dkms build...

...that uses config that calls make with this makefile.

12 /16

dkms: issues

» Assumes (direct) control. Otherwise:
— We have a makefile...

— ...that is embedded by Kbuild in order to get list of objects to
build...

— ...and has rules for calling dkms build...
— ...that uses config that calls make with this makefile.

» Implements full module management functionality that
conflicts with the one distribution has.

12 /16

akmods

» Set of scripts for rebuilding kmod source RPMs for various
kernels, tailored specially for Fedora

» kmod RPM specs consist of lots of boilerplate code and are
written aroung big fat %{kernel module_tool} macro and
kmodtool script

» Packaging is not automated at all, "just grab spec template
and shape it to suit your needs”

13 /16

ddiskit

» Kernel module backporting assitance tool
» Tailored for the Red Hat Driver Disk building workflow

> Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

14 /16

ddiskit

» Kernel module backporting assitance tool
» Tailored for the Red Hat Driver Disk building workflow

> Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

» The second version was the same, but builds RPMs

14 /16

ddiskit

Kernel module backporting assitance tool
Tailored for the Red Hat Driver Disk building workflow

Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

The second version was the same, but builds RPMs

The third incarnation is a Python rewrite that introduced
more automation

14 /16

ddiskit

Kernel module backporting assitance tool
Tailored for the Red Hat Driver Disk building workflow

Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

The second version was the same, but builds RPMs

The third incarnation is a Python rewrite that introduced
more automation

%{kernel module_tool}-free!

14 /16

ddiskit

v

Import sources from kernel tree:

ddiskit prepare_sources \
-d drivers/net/ethernet/ibm -r ${GIT_HASH}

Generate spec:

v

ddiskit generate_spec
Build RPM:
ddiskit build_rpm -G -a -e -m

v

Generate Driver Disk:
ddiskit build_iso

v

15/16

Links

LDD3: https://lwn.net/Kernel/LDD3/

BLCR: http://crd.1bl.gov/departments/computer-science/
CLaSS/research/BLCR/

— dkms: https://github.com/dell/dkms

— akmods:
https://rpmfusion.org/Packaging/KernelModules/Akmods

— ddiskit: https://github.com/orosp/ddiskit

16

16

https://lwn.net/Kernel/LDD3/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://github.com/dell/dkms
https://rpmfusion.org/Packaging/KernelModules/Akmods
https://github.com/orosp/ddiskit

	Introduction
	Development
	Packaging
	Conclusion

