S=CR

Software Engineering Conference Russia

SOLID: the core principles of success
of the Symfony web framework
and of your applications

RIABCHENKO Vladyslav

Technical architect at Webnet (France)
5+ years full stack web-developer

Symfony certified developer and contributor

https://vria.eu

contact@vria.eu

https://twitter.com/RiaVlad

Plan

N o o L DN oe

Symfony

SOLID

Single responsibility principle
Open/closed principle

Liskov substitution principle
Interface segregation principle

Dependency inversion principle

Symfony framework

Symfony

@ Symfony

1. Set of reusable PHP
SOBRP @R Eework for web

projects
MVC Pattern

HTTP HTTP

Controller

Request Response

Symfony

Htthoundatlon Object-oriented layer for request, response, session,
a etc.
[Routing Maps requests to variables (controller, path

parameters)
] Mediator that allows decoupled components to

[EventDlspatcher communicate by dispatching events

{ HttpKerneI

Heart of framework that manages HTTP request-response
cycle

Service container that instantiates service objects out of
configuration and injects their dependencies

[Dependencylnjectlo

and 45 others including Security, Form, Console, Cache, Asset, Validator,
Serializer, etc.

Symfony

Bundles are reusable plugins that provide services, routes, controllers,
templates, etc.

[FrameworkBundle]

Configures Symfony components and glues them in web
app. It reqgisters services and event listeners.

doctrine/orm DBAL and ORM libraries to communicate with databases.

Provides routes, controllers, services, business logic,

[J
[twig/twig] Template engine.
[] templates for your purpose.

Your code

SOLID principles

S — Single Responsibility Principle
O — Open/Closed Principle

L — Liskov Substitution Principle

| — Interface Segregation Principle

D — Dependency Inversion Principle

SOLID helps to design a system that ... and avoid a system that is
Iib Reusable A Fragile

|b Flexible A Duplicated

|b Maintainable A Viscose

|b Understandabl A Unreasonably

e complex

Single responsibllity principle

>, I A class should have only a single responsibility. Responsibllity is a reason to
changeg

Single responsibility principle

ReportService

createReport (

getLastThreeReportsByAuthor (

searchBy (

export (Report

Single responsibility principle

Manager ReportManager

createReport (
Exporter ReportExporter

export (Report
RepOSItory ReportRepository

getLastThreeReportsByAuthor (

searchBy (

Single responsibility principle

Feature : Store users in database
Feature : Authenticate users against database (login form, HTTP auth,
whatevekigre user credentials in session and authenticate users at latter

Feature '"&lHRSSrders in
ARADASE On creation of order assign a currentrly connected user to it.

Single responsibility principle

— SecurityContext

Stores a user token setToken($token), getToken()

!

Checks if a current user authorization isGranted('attr', $sub)

AuthenticationProvider | Authenticates a token

l

UserProvider

!

EntityManager

|

OrderListener

Retrieves or refreshes user from database

All interaction with database at ORM and DBAL levels

Your listener that modifies order before it gets inserted

A Injecting SecurityContext service in any EntityManager’s
listener created a circular dependency.

Single responsibility principle

|b Solution is splitting SecurityContext into AuthorizationChecker and TokenStorage

v

AuthorizationChecker TokenStorage

isGranted('attr', S$sub) getToken ()
setToken (Stoken)

A 4

AuthenticationProvider

l

UserProvider

l

EntityManager

l

OrderlListener

Open/closed principle

Open/closed principle

2 I Entities should be open for extension, but closed for modification.

Open for extension:
« Alter or add behavior
« Extend an entity with new properties

Closed for modification:
« Adapt entity without modifying its source code
* Provide an entity with clear and stable interface

Open/closed principle

Technigques to stay in compliance with the open/closed principle:

Abstraction / Inheritance / Polymorphism

Dependency injection

Single responsibility principle

Design patterns. For example, those of GoF:

« Abstract Factory, Factory Method, Builder, Prototype,
« Bridge, Decorator, Proxy,

« Command, Mediator, Memento, Observer, State, Strategy, Template Method,
Visitor.

Open/closed principle

All HTTP requests are treated by front

controller.

// public/index.php
use App\Kernel;
use Symfony\Component\HttpFoundation\Request;

Skernel = new Kernel ($Senv, S$Sdebug);
Srequest = Request::createFromGlobals() ;
Sresponse = S$kernel->handle ($request) ;
Sresponse->send () ;

Symfony\Component \HttpKernel

HttpKernel

- dispatcher

+ handle ($Srequest) : Response

- container

—| - httpKernel

handle (Srequest)
registerBundles ()
configureRoutes ()

+ o+ o+

App

+ registerBundles ()
+ configureRoutes ()

Open/closed principle

Request-Response cycle is open for extension thanks to events dispatched at

Reques

every step. —
resolve call
controller (_) controller

7" REQUE CONTROLL CONTROLLER_ARGUM
ENTS
2 exists :
¢~ RESPON ¢ FINISH_REQU ¢~ TERMINA
1 SE EST TE

Liskov substitution principle

Liskov substitution principle

'j Objects should be replaceable with instances of their
P subtypes without altering the correctness of the program.

'j LSP describes behavioral subtyping —
o/ semantic rather than merely syntactic relation.

Liskov substitution principle

Square is a regular rectangle with four equal sides.

Rectangle Rectangle

- width

- height

+ setWidth (Swidth)

+ setHeight (Sheight)
+ getArea ()

setWidth (

+ setWidth (Swidth)

+ setHeight (S$Sheight)

client (Rectangle

->setHeight (8)

Client will fail when you pass Square ->setiidth (3)
ObJeCt assert (

—->area ()

Liskov substitution principle

LSP suggests behavioral conditions resembling those of design by contract

methodolo(cj:)y; _
 Preconditions cannot be strengthened in a subtype

 Postconditions cannot be weakened in a subtype
« Invariants of the supertype must be preserved in a

Precondition: width is integer > 0

- width Postcondition: $this->width equals $width
height //”,,f”’)' _ _ _ .

t setWidth (Swidth) —] Invariant: $this->height remains

+ setHeight($height) unchanged

+ getArea ()

Invariant: $this->width equals $this-
>height

Precondition: width is integer > 0
Postcondition: $this->width equals $width
Invariant: $this->height remains
unchanged

+ setWidth (Swidth) —
+ setHeight ($Sheight)

Liskov substitution principle

Authorization — verifying access rights/privileges of currently authenticated user.

In Symfony authorization is based on:

* Token: the user’s authentication information (roles, etc.),
 Attributes: rights/privileges to verify the access to,

* Object: Any object for which access control needs to be checked.

->isGranted ()

->isGranted(
->1sGranted ([

Liskov substitution principle

AuthorizationChecker

- tokenStorage i
— Ol - accessDecisionManager isGranted returns true/false. It delegates
+ isGranted ($Sattributes, S$object) decision to

AccessDecisionManager::.decide.

AccessDecisionManager

- voters : VoterInterfacel] decide asks all voters to vote and
—O| + decide ($token, S$attributes, S$Sobject) returns final decision.
VoterInterface

+ vote (Stoken, Ssubject, Sattributes)

a vote must return one of these values :
ACCESS GRANTED, ACCESS ABSTAIN or ACCESS DENIED.

Liskov substitution principle

Doctrine is several PHP libraries focused on database storage and object

mapping.

<§E€ Instance of Article

id: 17

createdAt:

text: "Hi Secrus!

author: Author (id=3, name=Marie)
DateTime (2018-10-01)
Today we..."

id: 3

articles:

<§E€ Instance of Author

name: Marie

[Article (id=17,

)]

1id
16

author 1id

2

=
-—

created at

2018-05-21

text
In thi..

17

17

2018-10-01

Hi sec..

O
o
Sl
=
@
)
AJ
<

w

id name
2 Albert
3 Marie
4 Isaac

Liskov substitution principle

Doctrine triggers a bunch of events during the life-time of stored entities:
prePersist and postPersist, preUpdate and postUpdate, preRemove and

Doctrine\ORM\Event\LifecycleEventArgs
Doctrine\ORM\Mapping ORM

Article

Precondition: $event-
>getEntity() is an instance of
Article

prePersist (LifecycleEventArgs

— \DateTime ()

preUpdate (LifecycleEventArgs

= ->getEntity ()
->setUpdatedAt (\DateTime ())

Liskov substitution principle

Doctrine listeners as services have access to other services via dependency

App\Entity\Article
Doctrine\ORM\Event\LifecycleEventArgs

ArticlelLifecyclelistener

prePersist (LifecycleEventArgs

->getEntity ()

Article) | Precondition: $event-
Soeertreatediy bR e >getEntity() is an instance of
any entity

preUpdate (LifecycleEventArgs

->getEntity ()
Article)
->setUpdatedBy (->

Interface segregation principle

Interface segregation principle

|——| Many client-specific interfaces are better than one general-purpose
7. interface.
No client should be forced to depend on methods it does not use.

Interface segregation principle

Container manages services which are any useful objects.

S

Configuraion:

yaml, xml, php

For each . . .
. - Instantiate service object on demand
service: L .
d - Instantiate its dependencies
- Inject dependencies into service
- class name

- Store and return the service
- Return the same instance on
consecutive demands

dependencies

Interface segregation principle

Psr\Container
Fetch ContainerInterface
@Qh\ﬂ%@i@nt + get ($id) : mixed
+ has ($id) : bool
code)
Symfony\Component\DependencyInjection
Configure services ContainerInterface 1
+ set ($1id, $service)
{E'k%ngt@h%) + initialized($id): bool

+ getParameter (Sname) : mixed

Compile container (init, -
FPRQ - services
Elaé D - parameterBag

- aliases

e oo oo oo o e e -

+ compile ()

Interface segregation principle

Routes
configuration

blog list:

requirements:
category:

page:
defaults:
page: 1

Url matcher

Smatcher->match ('/blog/symfony-routing/1"') ;

Url generator

$generator->generate ('blog list', ['category'

$generator->generate ('blog list', ['category'

path: /blog/{category}/{page}
controller: App\Controller\Blog::1list

config/routes.yaml

route name

path pattern

controller to execute
param constraints

'[a-z0-9\-_]+'
l\d+l

param default values

' route’ => string 'blog list'

' controller' => string 'App\Controller\Blog::list'
'page’ => string '1'

'category’ => string 'symfony-routing'

=> 'symfony-routing']) ; '/blog/symfony-routing'

=> 'secr', 'page' => 2]); '/blog/secr/2"

Interface segregation principle

Symfony\Component\Routing

UrlMatcherInterface
+ generate
(Sname, Sparamete

+ match ($pathinfo) : array

UrlGeneratorInterface

rs, SreferenceType) :

T

i

RouterInterface

+ getRouteCollection():

RouteCollection

A

- collection: RouteCollection
- options: array
- context

configuration of all

string

Dependency inversion principle

Dependency inversion principle

High-level modules should not depend on low-level
modules.
Both should depend on abstractions.

s
Abstractions should not depend on details.
s

Detalls should depend on abstractions.

Dependency inversion principle

Framework Monolog

Monolog\Logger Logger

Kernel

construct (Logger

handle ()

->10g (

Framework Monolog

Dependency inversion principle

Framework Monolog

Kernel Framework\LoggerInterface

Logger LoggerInterface

construct (LoggerInterface log ()

Framework
LoggerInterface

log (

Framework Monolog

}*_

Dependency inversion principle

More flexible solution

Framework AbstractLogger

/\

Monolog

Dependency inversion principle

PSR — PHP Standards
Recommendations by

RN ~1G — Framework Interoperability Group
~_ Psr\Log

~

A
, _ LoggerInterface
Symfony\Routing .-
- ’ /\
- /7

e W

Symfony\Security e

/7

Symfony\HTTPKernel

e

/

N

Dependency inversion principle

Symfony uses interfaces and dependency injection everywhere.

Symfony\Form

FormInterface ,
A Symfony\Validator
|
‘ Validator

v

FormExtensionInterface ValidatorInterface
/\

I
: Extension\Validator o
I
|

- == ValidatorExtension ACME\Validator

- validator: ValidatorInterface -
Validator -

s) €O &

Thank you!

https://vria.eu

contact@vria.eu
https://twitter.com/RiaVlad

https://webnet.fr

S=CR

