
12th CENTRAL & EASTERN EUROPEAN
SOFTWARE ENGINEERING CONFERENCE IN RUSSIA

October 28 - 29, Moscow

Michael Wong (Codeplay Software, VP of Research and Development), Andrew Richards, CEO
ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong

Head of Delegation for C++ Standard for Canada

Vice Chair of Programming Languages for Standards Council of Canada

Chair of WG21 SG5 Transactional Memory
Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded

Editor: C++ SG5 Transactional Memory Technical Specification

Editor: C++ SG1 Concurrency Technical Specification

http:://wongmichael.com/about

Heterogeneous Computing in C++ for
Self-driving cars

http://isocpp.org/wiki/faq/wg21�

Agenda
 How do we get to programming self-driving cars?
 SYCL: The open Khronos standard

 A comparison of Heterogeneous Programming Models
 SYCL Design Philosophy: C++ end to end model for HPC and consumers

 The ecosystem:
 VisionCpp
 Parallel STL
 TensorFlow, Machine Vision, Neural Networks, Self-Driving Cars

 Codeplay ComputeCPP Community Edition: Free Download

How do we get from here…

… to
here

?

Level 1
• Adaptive
• Assist

Level 2
• Execute
• Automated

manoeuvres

Level 3
• Limited overall

control

Level 4
• Deep self control
• All conditions

Level 5
• Autonomous
• Stages from

very local to
extensive
journeys

Level 0
• Warnings

These are the SAE levels
for autonomous vehicles.
Similar challenges apply

in other embedded
intelligence industries

0

1

5

2

4
3

We have a mountain to climb

How do
we get
to the
top?

When we
don’t
know
what the
top looks
like...

… and we
want to get
there in
safe,
manageabl
e,
affordable
steps…

… without
getting lost
on our
own…

… or
climbing
the wrong
mountain

This presentation will focus on:

 The hardware and software platforms that will be able to
deliver the results

 The software tools to build up the solutions for those
platforms

 The open standards that will enable solutions to
interoperate

 How Codeplay can help deliver embedded intelligence

Codeplay
Standards

bodies
• HSA Foundation: Chair of software group,

spec editor of runtime and debugging
• Khronos: chair & spec editor of SYCL.

Contributors to OpenCL, Safety Critical,
Vulkan

• ISO C++: Chair of Low Latency, Embedded
WG; Editor of SG1 Concurrency TS

• EEMBC: members

Research
• Members of EU research consortiums:

PEPPHER, LPGPU, LPGPU2, CARP
• Sponsorship of PhDs and EngDs for

heterogeneous programming: HSA, FPGAs,
ray-tracing

• Collaborations with academics
• Members of HiPEAC

Open source
• HSA LLDB Debugger
• SPIR-V tools
• RenderScript debugger in AOSP
• LLDB for Qualcomm Hexagon
• TensorFlow for OpenCL
• C++ 17 Parallel STL for SYCL
• VisionCpp: C++ performance-portable

programming model for vision

Presentations
• Building an LLVM back-end
• Creating an SPMD Vectorizer for OpenCL

with LLVM
• Challenges of Mixed-Width Vector Code Gen

& Scheduling in LLVM
• C++ on Accelerators: Supporting Single-

Source SYCL and HSA
• LLDB Tutorial: Adding debugger support for

your target

Company

• Based in Edinburgh, Scotland
• 57 staff, mostly engineering
• License and customize technologies for

semiconductor companies
• ComputeAorta and ComputeCpp:

implementations of OpenCL, Vulkan and
SYCL

• 15+ years of experience in heterogeneous
systems tools

Codeplay build the software platforms that deliver massive performance

What our ComputeCpp users say about us

“We at Google have been working closely with
Luke and his Codeplay colleagues on this

project for almost 12 months now. Codeplay's
contribution to this effort has been

tremendous, so we felt that we should let them
take the lead when it comes down to

communicating updates related to OpenCL.
… we are planning to merge the work that

has been done so far… we want to put
together a comprehensive test infrastructure”

Benoit Steiner – Google TensorFlow engineer

“We work with royalty-free SYCL
because it is hardware vendor agnostic,

single-source C++ programming model
without platform specific keywords. This

will allow us to easily work with any
heterogeneous processor solutions using

OpenCL to develop our complex
algorithms and ensure future

compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a
year now and they have resolved every

issue in a timely manner, while
demonstrating that this technology can

work with the most complex C++
template code. I am happy to say that the

combination of Codeplay's SYCL
implementation with our HPX runtime

system has turned out to be a very
capable basis for Building a

Heterogeneous Computing Model for
the C++ Standard using high-level

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for us,
that Codeplay released the ComputeCpp

project for the wider audience. We've
been waiting for this moment and

keeping our colleagues and students in
constant rally and excitement. We'd like
to build on this opportunity to increase

the awareness of this technology by
providing sample codes and talks to

potential users. We're going to give a
lecture series on modern scientific

programming providing field specific
examples.“

WIGNER Research Centre

for Physics

Where do we need to go?

“On a 100 millimetre-squared chip, Google needs something
like 50 teraflops of performance”

 - Daniel Rosenband (Google’s self-driving car
project) at HotChips 2016

1
1
2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

Google target

Desktop GPU

Integrated
GPU
Smartphone
GPU
Smartphone
CPU
Desktop CPU

Performance trends
G

FL
O

PS

Year of introduction

These trend
lines seem
to violate
the rules of
physics…

How do we get there from here?

1.We need to write
software today

for platforms that
cannot be built yet

We need to start with
simpler systems
that are not fully

autonomous

We need to validate the
systems as safe

Two models of software development

Design a
model

Validate
model

Select
platform

Implement
on

platform

Write
software

Select
platform

Optimize for
platform

Validate whole
platform

Design next
version

Which method can get us all the way to full
autonomy?

Hardware
designer
writing

Software

Software designer
writing Software

Desirable Development

Well Defined Middleware

Software Application

Hardware & Low-Level Software

Write
software

Evaluate
Architecture

Select
Platform

Develop
Platform

Write
software

Optimize for
platform

Validate whole
platform

Evaluate
Software

The different levels of programming model

Device-specific
programming
•Assembly language
•VHDL
•Device-specific C-
like programming
models

Higher-level
language enabler
•NVIDIA PTX
•HSA
•OpenCL SPIR
•SPIR-V

C-level
programming
•OpenCL C
•DSP C
•MCAPI/MTAPI

C++-level
programming
•SYCL
•CUDA
•HCC
•C++ AMP

Graph
programming
•OpenCV
•OpenVX
•Halide
•VisionCpp
•TensorFlow
•Caffe

Device-specific programming

 Not a route to full
autonomy

 Does not allow
software developers

to invest today

Can deliver
quick results

today

Can…
hand-optimize
directly for the

device

Cannot …
develop software
today for future

platforms

The route to full autonomy

 Graph programming
 This is the most widely-adopted approach to machine vision

and machine learning

 Open standards
 This lets you develop today for future architectures

Why graph programming?
When you scale the
number of cores:
• You don’t scale the number

of memory ports
• Your compute performance

increases
• But your off-chip memory

bandwidth does not
increase

Therefore:
• You need to reduce

off-chip memory
bandwidth by
processing
everything on-chip

• This is achieved by
tiling

However, writing
tiled image

pipelines is hard

IIif we build up a graph of operations (e.g. convolutions) and then
have a runtime system split into fused tiled operations across an

entire system-on-chip, we get great performance

Graph programming: some numbers

0

10

20

30

40

50

60

70

80

90

100

OpenCV (nodes) OpenCV (graph) Halide (nodes) Halide (graph) SYCL (nodes) SYCL (graph)

Effect of combining graph nodes on performance

Kernel time (ms) Overhead time (ms)

In this example,
we perform 3

image
processing

operations on
an accelerator

and compare 3
systems when

executing
individual

nodes, or a
whole graph

Halide and
SYCL use
kernel fusion,
whereas
OpenCV does
not. For all 3
systems, the
performance
of the whole
graph is
significantly
better than
individual
nodes
executed on
their own

The system is an
AMD APU and the
operations are:
RGB->HSV,
channel masking,
HSV->RGB

Graph programming
 For both machine vision algorithms and machine learning,

graph programming is the most widely-adopted approach
 Two styles of graph programming that we commonly see:

C-style graph
programming

• OpenVX
• OpenCV

C++-style graph
programming

• Halide
• RapidMind
• Eigen (also in TensorFlow)
• VisionCpp

C-style graph programming
OpenVX: open standard
• Can be implemented by vendors
• Create a graph with C API, then map to an entire

SoC

OpenCV: open source
• Implemented on OpenCL
• Implemented on device-specific accelerators
• Create a graph with C API, then execute

 & Device-Specific Programming

How do we adapt
it for all the graph
nodes we need?

Runtime
systems can
automatically
optimize the

graphs

Can …
develop software
today for future

platforms

What happens if
we invent our own

graph nodes?

C++-style graph programming

Examples in machine
vision/machine learning

• Halide
• RapidMind
• Eigen (also in TensorFlow)
• VisionCpp

C++ compilers that
support this style

• CUDA
• C++ OpenMP
• C++ 17 Parallel STL
• SYCL

C++ single-source programming

 C++ lets us build up graphs at compile-time
 This means we can map a graph to the processors offline

 C++ lets us write custom nodes ourselves
 This approach is called a C++ Embedded Domain-Specific

Language
 Very widely used, eg Eigen, Boost, TensorFlow,

RapidMind, Halide

Combining open
standards, C++
and graph
programming

SYCL combines C++ single-
source with OpenCL acceleration

OpenCL lets us
run on a very
wide range of

accelerators now
and in the future

Single-source is
most widely-

adopted machine
learning

programming
model

C++ single-
source lets us

create
customizable
graph models

Putting it all together: building it

Higher-level programming enablers

NVIDIA PTX

• NVIDIA CUDA-only

HSA

• Royalty-free open
standard
• HSAIL is the IR
• Provides a single

address space, with
virtual memory
• Low-latency

communication

OpenCL SPIR

• Defined for OpenCL
v1.2
• Based on Clang/LLVM

(the open-source
compiler)

SPIR-V

• Open standard
• Defined by Khronos
• Supports compute and

graphics (OpenCL,
Vulkan and OpenGL)
• Not tied to any

compiler

Open standard intermediate
representations enable tools to be

built on top and support a wide range
of platforms

Which model should we choose?

Device-specific
programming
•Assembly language
•VHDL
•Device-specific C-
like programming
models

Higher-level
language enabler
•NVIDIA PTX
•HSA
•OpenCL SPIR
•SPIR-V

C-level
programming
•OpenCL C
•DSP C
•MCAPI/MTAPI

C++-level
programming
•SYCL
•CUDA
•HCC
•C++ AMP

Graph
programming
•OpenCV
•OpenVX
•Halide
•VisionCpp
•TensorFlow
•Caffe

They are not alternatives, they are layers

Device-specific programming

Assembly language VHDL Device-specific C-like programming models

Higher-level language enabler

NVIDIA PTX HSA OpenCL SPIR SPIR-V

C/C++-level programming

SYCL CUDA HCC C++ AMP OpenCL

Graph programming

OpenCV OpenVX Halide VisionCpp TensorFlow Caffe

Can specify, test and validate each layer

Device-specific programming

Device-specific specification Device-specific testing and validation

Higher-level language enabler

SPIR/SPIR-V/HSAIL specs Conformance testsuites

C/C++-level programming

OpenCL/SYCL specs Clsmith testsuite Conformance testsuites Wide range of other testsuites

Graph programming

Validate graph models Validate the code using standard tools

For Codeplay, these are our layer choices

Device-
specific
programming
• LLVM

Higher-level
language
enabler
• OpenCL SPIR

C/C++-
level
programming
• SYCL

Graph
programming
• TensorFlow
• OpenCV

We have chosen a layer of standards, based
on current market adoption

• TensorFlow and OpenCV
• SYCL
• OpenCL (with SPIR)
• LLVM as the standard compiler

back-end

The actual choice of standards may
change based on market dynamics,

but by choosing widely adopted
standards and a layering approach, it

is easy to adapt

For Codeplay, these are our products

Device-
specific
programming
• LLVM

Higher-level
language
enabler
• OpenCL SPIR

C/C++-
level
programming
• SYCL

Graph
programming
• TensorFlow
• OpenCV

Further information

 OpenCL https://www.khronos.org/opencl/
 OpenVX https://www.khronos.org/openvx/
 HSA http://www.hsafoundation.com/
 SYCL http://sycl.tech
 OpenCV http://opencv.org/
 Halide http://halide-lang.org/
 VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/�
https://www.khronos.org/openvx/�
http://www.hsafoundation.com/�
http://sycl.tech/�
http://opencv.org/�
http://halide-lang.org/�
https://github.com/codeplaysoftware/visioncpp�

Agenda
 How do we get to programming self-driving cars?
 SYCL: The open Khronos standard

 A comparison of Heterogeneous Programming Models
 SYCL Design Philosophy: C++ end to end model for HPC and consumers

 The ecosystem:
 VisionCpp
 Parallel STL
 TensorFlow, Machine Vision, Neural Networks, Self-Driving Cars

 Codeplay ComputeCPP Community Edition: Free Download

C++ support for massive parallel heterogeneous
devices
• Memory allocation (near, far memory)
• Better affinity for cpu and memory
• Templates (static, compile time)
• Exceptions
• Polymorphism
• Tasks blocks
• Execution Agents/Context
• Progress Guarantees
• Current Technical Specifications

– Concepts, Parallelism, Concurrency, TM

C++ Std Timeline/status
 https://wongmichael.com/2016/06/29/c17-all-final-features-from-oulu-in-a-few-slides/

34

Pre-C++11 projects
ISO number Name Status What is it? C++17?

ISO/IEC TR 18015:2006
Technical Report on C++
Performance

Published 2006 (ISO store)
Draft: TR18015 (2006-02-
15)

C++ Performance report No

ISO/IEC TR 19768:2007
Technical Report on C++
Library Extensions

Published 2007-11-15 (ISO
store)
Draft: n1745 (2005-01-17)
TR 29124 split off, the rest
merged into C++11

Has 14 Boost libraries, 13 of
which was added to C++11.

N/A (mostly already included
into C++11)

ISO/IEC TR 29124:2010

Extensions to the C++
Library to support
mathematical special
functions

Published 2010-09-03 (ISO
Store)
Final draft: n3060 (2010-03-
06). Under consideration to
merge into C++17 by p0226
(2016-02-10)

Really, ORDINARY math
today with a Boost and
Dinkumware Implementation

YES

ISO/IEC TR 24733:2011

Extensions for the
programming language C++
to support decimal floating-
point arithmetic

Published 2011-10-25 (ISO
Store)
Draft: n2849 (2009-03-06)
May be superseded by a
future Decimal TS or merged
into C++ by n3871

Decimal Floating Point
decimal32
decimal64
decimal128

No. Ongoing work in SG6

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43351�
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3060.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r0.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2849.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html�

Status after June Oulu C++ Meeting

ISO number Name Status links C++17?

ISO/IEC TS 18822:2015
C++ File System Technical
Specification

Published 2015-06-18. (ISO
store). Final draft: n4100
(2014-07-04)

Standardize Linux and
Windows file system
interface

YES

ISO/IEC TS 19570:2015
C++ Extensions for
Parallelism

Published 2015-06-24. (ISO
Store). Final draft: n4507
(2015-05-05)

Parallel STL algorithms.

YES but removed dynamic
execution policy,
exception_lists, changed
some names

ISO/IEC TS 19841:2015 Transactional Memory TS
Published 2015-09-16, (ISO
Store). Final draft: n4514
(2015-05-08)

Composable lock-free
programming that scales

No. Already in GCC 6
release and waiting for
subsequent usage
experience.

ISO/IEC TS 19568:2015
C++ Extensions for Library
Fundamentals

Published 2015-09-30, (ISO
Store). Final draft: n4480
(2015-04-07)

optional, any,
string_view and more

YES but moved Invocation
Traits and Polymorphic
allocators into LF TS2

ISO/IEC TS 19217:2015
C++ Extensions for
Concepts

Published 2015-11-13. (ISO
Store). Final draft: n4553
(2015-10-02)

Constrained templates

No. Already in GCC 6
release and and waiting for
subsequent usage
experience.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483�
http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4100.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031�
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf�

Status after June Oulu C++ Meeting
ISO number Name Status What is it? C++17?

ISO/IEC TS 19571:2016
C++ Extensions for
Concurrency

Published 2016-01-19.
(ISO Store) Final draft:
p0159r0 (2015-10-22)

improvements to
future, latches and
barriers, atomic smart
pointers

No. Already in Visual
Studio release and waiting
for subsequent usage
experience.

ISO/IEC DTS 19568:xxxx
C++ Extensions for
Library Fundamentals,
Version 2

DTS. Draft: n4564 (2015-
11-05)

source code information
capture and various
utilities

No. Resolution of
comments from national
standards bodies in
progress

ISO/IEC DTS 21425:xxxx Ranges TS
In development, Draft
n4569 (2016-02-15)

Range-based algorithms
and views

No. Wording review of the
spec in progress

ISO/IEC DTS 19216:xxxx Networking TS
In development, Draft
n4575 (2016-02-15)

Sockets library based on
Boost.ASIO

No. Wording review of the
spec in progress.

Modules
In development, Draft
p0142r0 (2016-02-15) and
p0143r1 (2016-02-15)

A component system to
supersede the textual
header file inclusion model

No. Initial TS wording
reflects Microsoft’s design;
changes proposed by Clang
implementers expected.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65242�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4575.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0142r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0143r1.pdf�

Status after June Oulu C++ Meeting
ISO number Name Status What is it? C++17?

Numerics TS
Early development. Draft
p0101 (2015-09-27)

Various numerical facilities
No. Under active
development

ISO/IEC DTS 19571:xxxx Concurrency TS 2 Early development

Exploring executors,
synchronic types, lock-free,
atomic views, concurrent
data structures

No. Under active
development

ISO/IEC DTS 19570:xxxx Parallelism TS 2
Early development. Draft
n4578 (2016-02-22)

Exploring task blocks,
progress guarantees, SIMD.

No. Under active
development

ISO/IEC DTS 19841:xxxx Transactional Memory TS 2 Early development
Exploring on_commit,
in_transaction.

No. Under active
development.

Graphics TS
Early development. Draft
p0267r0 (2016-02-12)

2D drawing API
No. Wording review of the
spec in progress

ISO/IEC DTS 19569:xxxx Array Extensions TS
Under overhaul. Abandoned
draft: n3820 (2013-10-10)

Stack arrays whose size is not
known at compile time

No. Withdrawn; any future
proposals will target a
different vehicle

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0101r0.html�
https://isocpp.org/files/papers/N4578.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3820.html�

Status after June Oulu C++ Meeting

ISO number Name Status What is it? C++17?

Coroutine TS
Initial TS wording will reflect
Microsoft’s await design; changes
proposed by others expected.

Resumable functions No. Under active development

Reflection TS
Design direction for introspection
chosen; likely to target a future TS

Code introspection and (later)
reification mechanisms

No. Under active development

Contracts TS
Unified proposal reviewed
favourably.)

Preconditions, postconditions, etc. No. Under active development

Massive Parallelism TS Early development Massive parallelism dispatch No. Under active development.

Heterogeneous Device TS Early development. Support Hetereogeneous Devices
No. Under active development.

C++17 On track for 2017

Filesystem TS, Parallelism TS,
Library Fundamentals TS I, if
constexpr, and various other
enhancements are in. See slide 44-
47 for details.

YES

SG1 Par/Con
TS

SG5
Transactional
Memory TS

SG14 Low
Latency

…

3

…
…

…

…

…

…

…

…

The Parallel and concurrency planets
of C++ today

C++1Y(1Y=17/20/22) SG1/SG5/SG14 Plan
red=C++17, blue=C++20? Black=future?
Parallelism
 Parallel Algorithms:
 Data-Based Parallelism.

(Vector, SIMD, ...)
 Task-based parallelism

(cilk, OpenMP, fork-join)
 Execution Agents
 Progress guarantees
 MapReduce
 Pipelines/channels

Concurrency
 Future++ (then, wait_any, wait_all):
 Executors:
 Resumable Functions, await (with

futures)
 Lock free techniques/Transactions
 Synchronics
 Atomic Views
 Co-routines
 Counters/Queues
 Concurrent Vector/Unordered

Associative Containers
 Latches and Barriers
 upgrade_lock
 Atomic smart pointers

Part 1: Parallel C++ Library
In C++17

42

Execution Policies Published 2015
using namespace std::experimental::parallelism;
std::vector<int> vec = ...

// previous standard sequential sort
std::sort(vec.begin(), vec.end());

// explicitly sequential sort
std::sort(std::seq, vec.begin(), vec.end());

// permitting parallel execution
std::sort(std::par, vec.begin(), vec.end());

// permitting vectorization as well
std::sort(std::par_unseq, vec.begin(), vec.end());

Part 2: Forward Progress
guarantees in C++17

44

ParallelSTL
 C++17 execution policies require concurrent or

parallel forward progress guarantees
 This means GPUs are not support by the standard execution

policies
 Executors intend to interface with execution policies

parallel_for_each(par.on(exec), vec.begin(), vec.end(),

[=](int&e){ /* … */ });

45

Forward Progress Guarantees
 C++17 forward progress guarantees are:

 Concurrent forward progress guarantees
 a thread of execution is required to make forward progress regardless of the

forward progress of any other thread of execution.
 Parallel forward progress guarantees

 a thread of execution is not required to make forward progress until an
execution step has occurred and from that point onward a thread of execution is
required to make forward progress regardless of the forward progress of any
other thread of execution.

 Weakly parallel forward progress guarantees
 a thread of execution is not required to make progress.

 These are not specific guarantees for GPUs

46

Part 3: Futures++ (.then,
wait_any, wait_all) in future C++
20

47

Futures & Continuations
 Extensions to C++11 futures
 MS-style .then continuations
 then()

 Sequential and parallel composition
 when_all() - join
 when_any() - choice

 Useful utilities:
 make_ready_future()
 is_ready()
 unwrap()

Summary Of Proposed Extensions (1)

template<typename F>
auto then(F&& func) -> future<decltype(func(*this))>;

template<typename F>
auto then(executor &ex, F&& func) -> future<decltype(func(*this))>;

template<typename F>
auto then(launch policy, F&& func) -> future<decltype(func(*this))>;

Summary Of Proposed Extensions (2)
template <typename T>
future<typename decay<T>::type> make_ready_future(T&& value);

future<void> make_ready_future();

bool is_ready() const;

template<typename R2>
future<R> future<R>::unwrap();
// R is a future<R2> or shared_future<R2>

Summary Of Proposed Extensions (3)
template <class InputIterator>
<...> when_all(InputIterator first, InputIterator last);

template <typename... T>
<...> when_all(T&&... futures);

template <class InputIterator>
<...> when_any(InputIterator first, InputIterator last);

template <typename... T>
<...> when_any(T&&... futures);

template <class InputIterator>
<see below> when_any_swapped(InputIterator first, InputIterator last);

Part 4: Executors in future
C++20

52

Executors
 Executors are to function execution what allocators are

to memory allocation
 If a control structure such as std::async() or the parallel

algorithms describe work that is to be executed
 An executor describes where and when that work is to

be executed
 http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2016/p0443r0.ht
ml

The Idea Behind Executors

Unified Interface for Execution

Several Competing Proposals
 P0008r0 (Mysen): Minimal interface for fire-and-forget

execution
 P0058r1 (Hoberock et al.): Functionality needed for

foundations of Parallelism TS
 P0113r0 (Kohlhoff): Functionality needed for

foundations of Networking TS
 P0285r0 (Kohlhoff): Executor categories &

customization points

Current Progress of Executors
 Closing in on minimal

proposal
 A foundation for later

proposals (for
heterogeneous
computing)

 Still work in progress

Current Progress of Executors
• An instruction stream is the

function you want to execute
• An executor is an interface that

describes where and when to
run an instruction stream

• An executor has one or more
execute functions

• An execute function executes
an instruction stream on light
weight execution agents such
as threads, SIMD units or GPU
threads

Current Progress of Executors
• An execution platform is a

target architecture such as
linux x86

• An execution resource is the
hardware abstraction that is
executing the work such as a
thread pool

• An execution context
manages the light weight
execution agents of an
execution resource during
the execution

Executors: Bifurcation

• Bifurcation of one-way vs two-way
• One-way –does not return anything
• Two-way –returns a future type

• Bifurcation of blocking vs non-blocking (WIP)
• May block –the calling thread may block forward progress until the execution is complete
• Always block –the calling thread always blocks forward progress until the execution is

complete
• Never block –the calling thread never blocks forward progress.

• Bifurcation of hosted vs remote
• Hosted –Execution is performed within threads of the device which the execution is

launched from, minimum of parallel forward progress guarantee between threads
• Remote –Execution is performed within threads of another remote device, minimum

Features of C++ Executors

• One-way non-blocking single execute executors
• One-way non-blocking bulk execute executors
• Remote executors with weakly parallel forward progress guarantees
• Top down relationship between execution context and executor
• Reference counting semantics in executors
• A minimal execution resource which supports bulk execute
• Nested execution contexts and executors
• Executors block on destruction

Create execution agents
Manage data they share
Advertise semantics

Mediate dependencies

class sample_executor

{

public:

 using execution_category = ...;
 using shape_type = tuple<size_t,size_t>;
 template<class T> using future = ...;
 template<class T> future<T>

make_ready_future(T&& value);
 template<class Function, class Factory1,

class Factory2> future<...>
bulk_async_execute(Function f,
shape_type shape, Factory1
result_factory, Factory2
shared_factory);...

}

Executor Framework: Abstract Platform
details of execution.

Purpose of executors:where/how execution

 Placement is, by default, at discretion of the system.

 If the Programmer want to control placement:

Control relationship with Calling threads
 async (launch_flag, function)
 async (executor, function)

Executor Interface:semantic types exposed by
executors

Type Meaning

execution_category Scheduling semantics amongst agents in a task.
(sequenced, vector-parallel, parallel, concurrent)

shape_type Type for indexing bulk launch of agents.
(typically n-dimensional integer indices)

future<T> Type for synchronizing asynchronous activities.
(follows interface of std::future)

Executor Interface:core constructs for
launching work

Type of agent tasks Constructs

Single-agent tasks result sync_execute(Function f);
future<result> async_execute(Function f);
future<result> then_execute(Function f, Future& predecessor);

Multi-agent tasks result bulk_sync_execute(Function f,
shape_type shape, Factory result_factory, Factory shared_factory);
future<result> bulk_async_execute(Function f,
shape_type shape, Factory result_factory, Factory shared_factory);
future<result> bulk_then_execute(Function f, Future& predecessor,
shape_type shape, Factory result_factory, Factory shared_factory);

Vector SIMD Parallelism for Parallelism
TS2
 No standard!
 Boost.SIMD
 Proposal N3571 by Mathias Gaunard et. al., based on the Boost.SIMD

library.
 Proposal N4184 by Matthias Kretz, based on Vc library.
 Unifying efforts and expertise to provide an API to use SIMD portably
 Within C++ (P0203, P0214)
 P0193 status report
 P0203 design considerations
 Please see Pablo Halpern, Nicolas Guillemot’s and Joel Falcou’s talks on

Vector SPMD, and SIMD.

SIMD from Matthias Kretz and Mathias
Gaunard
 std::datapar<T, N, Abi>

 datapar<T, N> SIMD register holding N elements of type T

 datapar<T> same with optimal N for the currently targeted architecture

 Abi Defaulted ABI marker to make types with incompatible ABI different

 Behaves like a value of type T but applying each operation on the N values it contains,
possibly in parallel.

 Constraints

 T must be an integral or floating-point type (tuples/struct of those once we get reflection)

 N parameter under discussion, probably will need to be power of 2.

Operations on datapar
 Built-in operators

 All usual binary operators are
available, for all:

 datapar<T, N> datapar<U, N>

 datapar<T, N> U, U datapar<T, N>

 Compound binary operators and
unary operators as well

 datapar<T, N> convertible to
datapar<U, N>

 datapar<T, N>(U) broadcasts the
value

• No promotion:
• datapar<uint8_t>(255) +

datapar<uint8_t>(1) ==
datapar<uint8_t>(0)

• Comparisons and
conditionals:
• ==, !=, <, <=,> and >= perform

element-wise comparison return
mask<T, N, Abi>

• if(cond) x = y is written as
where(cond, x) = y

• cond ? x : y is written as
if_else(cond, x, y)

© Copyright Khronos Group, 2014 - Page 69

SYCL v1.2 release

Over 100 members worldwide
any company is welcome to join

BOARD OF PROMOTERS

http://www.toshiba.com/�
http://www.google.com/�
http://www.marvell.com/index.jsp�
http://www.amd.com/�

SYCL is not magic

SYCL is a practical, open, royalty-free standard to deliver
high performance software on today’s highly-parallel systems

What is SYCL for?
 Modern C++ lets us separate the what from the how :

 We want to separate what the user wants to do: science, computer vision, AI …

 And enable the how to be: run fast on an OpenCL device

 Modern C++ supports and encourages this separation

What we want to achieve
 We want to enable a C++ ecosystem for OpenCL:

 C++ template libraries

 Tools: compilers, debuggers, IDEs, optimizers

 Training, example programs

 Long-term support for current and future OpenCL features

Why a new standard?
 There are already very established ways

to map C++ to parallel processors
 So we follow the established

approaches

 There are specifics to do with OpenCL we
need to map to C++
 We have worked hard to be an

enabler for other C++ parallel
standards

 We add no more than we need to

http://imgs.xkcd.com/comics/standards.png

http://imgs.xkcd.com/comics/standards.png�

What features of OpenCL do we need?
 We want to enable all OpenCL features in C++ with SYCL

 Images, work-groups, barriers, constant/global/local/private memory
 Memory sharing: mapping and DMA
 Platforms, contexts, events, queues
 Support wide range of OpenCL devices: CPUs, GPUs, FPGAs, DSPs…

 We want to make it easy to write high-performance OpenCL code in C++

 SYCL code in C++ must use memory and execute kernels efficiently
 We must provide developers with all the optimization options they have in OpenCL

 We want to enable OpenCL C code to interoperate with C++ SYCL code

 Sharing of contexts, memory objects etc

How do we bring OpenCL features to C++?
 Key decisions:

 We will not add any language extensions to C++

 We will work with existing C++ compilers

 We will provide the full OpenCL feature-set in C++

OpenCL / SYCL Stack

OpenCL Devices

SYCL for OpenCL

C++ template libraries C++ template libraries C++ template libraries

User application code

CPU

Other technologies

CPU

GPU DSP

FPGA

Custom Processor

Example SYCL Code
#include <CL/sycl.hpp>

int main ()
{
….

 // Device buffers
 buffer<float, 1 > buf_a(array_a, range<1>(count));
 buffer<float, 1 > buf_b(array_b, range<1>(count));
 buffer<float, 1 > buf_c(array_c, range<1>(count));
 buffer<float, 1 > buf_r(array_r, range<1>(count));
 queue myQueue;
 myQueue.submit([&](handler& cgh)
 {

 // Data accessors
 auto a = buf_a.get_access<access::read>(cgh);
 auto b = buf_b.get_access<access::read>(cgh);
 auto c = buf_c.get_access<access::read>(cgh);
 auto r = buf_r.get_access<access::write>(cgh);
 // Kernel
 cgh.parallel_for<class three_way_add>(count, [=](id<> i)
 {
 r[i] = a[i] + b[i] + c[i];
 })
);
 });

….
}

Example SYCL Code #include <CL/sycl.hpp>

void func (float *array_a, float *array_b, float *array_c,
 float *array_r, size_t count)
{
 buffer<float, 1 > buf_a(array_a, range<1>(count));
 buffer<float, 1 > buf_b(array_b, range<1>(count));
 buffer<float, 1 > buf_c(array_c, range<1>(count));
 buffer<float, 1 > buf_r(array_r, range<1>(count));
 queue myQueue (gpu_selector);

 myQueue.submit([&](handler& cgh)
 {

 auto a = buf_a.get_access<access::read>(cgh);
 auto b = buf_b.get_access<access::read>(cgh);
 auto c = buf_c.get_access<access::read>(cgh);
 auto r = buf_r.get_access<access::write>(cgh);

 cgh.parallel_for<class three_way_add>(count, [=](id<1> i)
 {
 r[i] = a[i] + b[i] + c[i];
 });
});

}

Encapsulate data in SYCL buffers
which be mapped or copied to or from
OpenCL devices

Create a queue, preferably on a GPU,
which can execute kernels

Submit to the queue all the work
described in the handler lambda that
follows

Create accessors which encapsulate the type
of access to data in the buffers

#include the SYCL header file

Execute in parallel the work over an ND
range (in this case ‘count’)

This code is executed in parallel on
the device

How did we come to our decisions?

What was our thinking?

How do we offload code to a heterogeneous device?

Compilation Model

CPU
Compiler

CPU
Object

x86 ISA

Source

File
Linker x86 CPU

Compilation Model

CPU
Compiler

CPU
Object

x86 ISA

Source

File
Linker x86 CPU

Compilation Model

CPU
Compiler

CPU
Object

x86 ISA

Source

File
Linker x86 CPU

GPU

How can we compile source code for a sub architectures?

 Separate source

 Single source

Separate Source Compilation Model

CPU
Compiler

CPU
Object

x86 ISA

Source

File
Linker x86 CPU

Device
Source

Online
Compiler

GPU

float *a, *b, *c;
…
kernel k = clCreateKernel(…, “my_kernel”, …);
clEnqueueWriteBuffer(…, size, a, …);
clEnqueueWriteBuffer(…, size, a, …);
clEnqueueNDRange(…, k, 1, {size, 1, 1}, …);
clEnqueueWriteBuffer(…, size, c, …);

void my_kernel(__global float *a, __global float
*b,
 __global float *c) {
 int id = get_global_id(0);
 c[id] = a[id] + b[id];
}

Here we’re using OpenCL as an example

Single Source Compilation Model

CPU
Compiler

CPU
Object

x86 ISA

Source

File
Linker x86 CPU

GPU

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

Here we are using C++ AMP as an example

Single Source Compilation Model

Source

File

Devic
e

Sourc
e

Device
Compiler

Device
IR /

Object

CPU
Compiler

CPU
Object

x86 ISA Linker x86 CPU

GPU

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

Here we are using C++ AMP as an example

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

Single Source Compilation Model

Device
Compiler

Device
IR /

Object

CPU
Compiler

CPU
Object

x86 ISA

Linker

x86 CPU
Source

File

Devic
e

Sourc
e

GPU

Here we are using C++ AMP as an example

Single Source Compilation Model

Device
Compiler

Device
IR /

Object

CPU
Compiler

CPU
Object

x86 ISA
(Embedded
Device IR /

Object)

Linker

x86 CPU
Source

File

Devic
e

Sourc
e

GPU

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

Here we are using C++ AMP as an example

Benefits of Single Source
• Device code is written in the same source file as the host CPU code

• Allows compile-time evaluation of device code

• Supports type safety across host CPU and device

• Supports generic programming

• Removes the need to distribute source code

Describing Parallelism

How do you represent the different forms of parallelism?

 Directive vs explicit parallelism

 Task vs data parallelism

 Queue vs stream execution

Directive vs Explicit Parallelism

vector<float> a, b, c;

#pragma omp parallel for
for(int i = 0; i < a.size(); i++) {
 c[i] = a[i] + b[i];
}

array_view<float> a, b, c;
extent<2> e(64, 64);
parallel_for_each(e, [=](index<2> idx)
restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

Examples:
• SYCL, CUDA, TBB, Fibers, C++11

Threads
Implementation:

• An API is used to explicitly enqueuer
one or more threads

Examples:
 OpenMP, OpenACC

Implementation:
 Compiler transforms code to be

parallel based on pragmas

Here we’re using C++ AMP as an example Here we’re using OpenMP as an example

Task vs Data Parallelism

vector<task> tasks = { … };

tbb::parallel_for_each(tasks.begin(),
 tasks.end(), [=](task &v) {
 task();
});

float *a, *b, *c;
cudaMalloc((void **)&a, size);
cudaMalloc((void **)&b, size);
cudaMalloc((void **)&c, size);

vec_add<<<64, 64>>>(a, b, c);

Examples:
 OpenMP, C++11 Threads, TBB

Implementation:
 Multiple (potentially different) tasks

are performed in parallel

Here we’re using CUDA as an example Here we’re using TBB as an example

Examples:
• C++ AMP, CUDA, SYCL, C++17

ParallelSTL
Implementation:

• The same task is performed across a
large data set

Queue vs Stream Execution

float *a, *b, *c;
cudaMalloc((void **)&a, size);
cudaMalloc((void **)&b, size);
cudaMalloc((void **)&c, size);

vec_add<<<64, 64>>>(a, b, c);

reduce void sum (float a<>,
 reduce float r<>) {
 r += a;
}
float a<100>;
float r;
sum(a,r);

Here we’re using BrookGPU as an example

Examples:
• BOINC, BrookGPU

Implementation:
• A function is executed on a

continuous loop on a stream of data

Here we’re using CUDA as an example

Examples:
• C++ AMP, CUDA, SYCL, C++17

ParallelSTL
Implementation:

• Functions are placed in a queue and
executed once per enqueuer

Data Locality & Movement

One of the biggest limiting factor in heterogeneous computing

 Cost of data movement in time and power consumption

Cost of Data Movement
 It can take considerable time to move data to a device

This varies greatly depending on the architecture
 The bandwidth of a device can impose bottlenecks

This reduces the amount of throughput you have on the device
 Performance gain from computation > cost of moving data

 If the gain is less than the cost of moving the data it’s not worth doing
 Many devices have a hierarchy of memory regions

Global, read-only, group, private
Each region has different size, affinity and access latency
Having the data as close to the computation as possible reduces the

cost

Cost of Data Movement
• 64bit DP Op:

• 20pJ

• 4x64bit register read:
• 50pJ

• 4x64bit move 1mm:
• 26pJ

• 4x64bit move 40mm:
• 1nJ

• 4x64bit move DRAM:
• 16nJ Credit: Bill Dally, Nvidia, 2010

How do you move data from the host CPU to a device?

 Implicit vs explicit data movement

Implicit vs Explicit Data Movement

array_view<float> ptr;
extent<2> e(64, 64);
parallel_for_each(e, [=](index<2> idx)
restrict(amp) {
 ptr[idx] *= 2.0f;
});

float *h_a = { … }, d_a;
cudaMalloc((void **)&d_a, size);
cudaMemcpy(d_a, h_a, size,
 cudaMemcpyHostToDevice);
vec_add<<<64, 64>>>(a, b, c);
cudaMemcpy(d_a, h_a, size,
 cudaMemcpyDeviceToHost);

Examples:
 OpenCL, CUDA, OpenMP

Implementation:
 Data is moved to the device via

explicit copy APIs

Here we’re using C++ AMP as an example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device

implicitly via cross host CPU / device
data structures

Here we’re using CUDA as an example

How do you address memory between host CPU and device?

 Multiple address space

 Non-coherent single address space

 Cache coherent single address space

Comparison of Memory Models
• Multiple address space

• SYCL 1.2, C++AMP, OpenCL 1.x, CUDA
• Pointers have keywords or structures for representing different address spaces
• Allows finer control over where data is stored, but needs to be defined explicitly

• Non-coherent single address space

• SYCL 2.2, HSA, OpenCL 2.x , CUDA 4, OpenMP
• Pointers address a shared address space that is mapped between devices
• Allows the host CPU and device to access the same address, but requires mapping

• Cache coherent single address space

• SYCL 2.2, HSA, OpenCL 2.x, CUDA 6, C++,
• Pointers address a shared address space (hardware or cache coherent runtime)
• Allows concurrent access on host CPU and device, but can be inefficient for large

data

SYCL: A New Approach to Heterogeneous Programming
in C++

SYCL for OpenCL

 Cross-platform, single-source, high-level, C++ programming layer
 Built on top of OpenCL and based on standard C++14

The SYCL Ecosystem

C++ Application

C++ Template Library

SYCL for OpenCL

OpenCL

C++ Template Library C++ Template Library

GPU APU CPU FPGA Accelerator DSP

How does SYCL improve heterogeneous offload and performance portability?

 SYCL is entirely standard C++

 SYCL compiles to SPIR

 SYCL supports a multi compilation single source model

Single Compilation Model

Device
Compiler

Device
Object

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

Device
Object)

Linker

x86 CPU C++
Source

File

Devic
e

Sourc
e

GPU

Single Source Host & Device Compiler

Single Compilation Model

x86 ISA
(Embedded

Device
Object)

x86 CPU C++
Source

File

Devic
e

Sourc
e

GPU

Tied to a single
compiler chain

x86
CPU

Single Compilation Model

x86 ISA
(Embedded
AMD ISA)

AMD
GPU

C++
Source

File

C++
AMP
Sourc

e CUD
A

Sourc
e Open

MP
Sourc

e

CUDA Compiler

C++ AMP Compiler

OpenMP Compiler

x86 ISA
(Embedded
NVidia ISA)

x86 ISA
(Embedded

x86)

X86
CPU

NVidia
GPU

X86
CPU

SIMD
CPU

3 different
compilers

3 different language
extensions

3 different
executables

__global__ vec_add(float *a, float *b, float *c) {
 return c[i] = a[i] + b[i];
}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c);

vector<float> a, b, c;

#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
 c[i] = a[i] + b[i];
}

SYCL is Entirely Standard C++

cgh.parallel_for<class vec_add>(range, [=](cl::sycl::id<2> idx) {
 c[idx] = a[idx] + c[idx];
}));

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

SYCL Targets a Wide Range of Devices with SPIR

GPU APU CPU FPGA Accelerator DSP

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU C++
Source

File

Devic
e

Code GPU
Online

Finalizer

SYCL device compiler
Generating SPIR

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU C++
Source

File

Devic
e

Code GPU
Online

Finalizer

GCC, Clang, VisualC++,
Intel C++

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU C++
Source

File

Devi
ce

Cod
e

GPU
Online

Finalizer

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU C++
Source

File

Devic
e

Code

OpenCL
Online

Finalizer

SIMD
CPU

GPU

APU

FPGA

DSP Device can be
selected at runtime

Standard IR allows for
better performance

portability SYCL does not mandate
SPIR

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU

C++
Source

File

 Devic
e

Code

OpenCL
Online

Finalizer

SIMD
CPU

GPU

APU

FPGA

DSP

SYCL
Compiler

PTX

Multi Compilation Model

SYCL
Compiler

SPIR

CPU
Compiler

CPU
Object

x86 ISA
(Embedded

SPIR)

Linker

x86 CPU

C++
Source

File

 Devic
e

Code

OpenCL
Online

Finalizer

SIMD
CPU

GPU

APU

FPGA

DSP

SYCL
Compiler

PTX
PTX binary can be
selected for NVidia
GPUs at runtime

How does SYCL support different ways of representing parallelism?

 SYCL is an explicit parallelism model

 SYCL is a queue execution model

 SYCL supports both task and data parallelism

Representing Parallelism

cgh.single_task([=](){

 /* task parallel task executed once*/

});

cgh.parallel_for(range<2>(64, 64), [=](id<2> idx){

 /* data parallel task executed across a range */

});

How does SYCL make data movement more efficient?

 SYCL separates the storage and access of data

 SYCL can specify where data should be stored/allocated

 SYCL creates automatic data dependency graphs

Separating Storage & Access

Buffer

Accessor CPU

GPU Accessor

Buffers and
accessors type

safe access across
host and device

Accessors are used
to describe access Buffers managed data

across host CPU and
one or more devices

Kernel

Storing/Allocating Memory in Different Regions

Buffer

Global
Accessor

Constant
Accessor

Local
Accessor

Memory stored in
global memory region

Memory stored in read-
only memory region

Memory allocated in
group memory region

Data Dependency Task Graphs

Buffer B

Buffer C

Buffer D

Buffer A

Kernel B

Kernel C

Kernel A
Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor

Kernel
C

Kernel
A

Kernel
B

Benefits of Data Dependency Graphs
 Allows you to describe your problems in terms of relationships

Don’t need to en-queue explicit copies
 Removes the need for complex event handling

Dependencies between kernels are automatically
constructed

 Allows the runtime to make data movement optimizations

Pre-emptively copy data to a device before kernels
Avoid unnecessarily copying data back to the host after

execution on a device
Avoid copies of data that you don’t need

So what does SYCL look like?

 Here is a simple example SYCL application; a vector add

Example: Vector Add

Example: Vector Add
#include <CL/sycl.hpp>

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {

}

Example: Vector Add
#include <CL/sycl.hpp>

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());

}

The buffers
synchronise upon

destruction

Example: Vector Add
#include <CL/sycl.hpp>

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());
 cl::sycl::queue defaultQueue;

}

Example: Vector Add
#include <CL/sycl.hpp>

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());
 cl::sycl::queue defaultQueue;
 defaultQueue.submit([&] (cl::sycl::handler &cgh) {

 });
}

Create a command group to
define an asynchronous task

Example: Vector Add
#include <CL/sycl.hpp>

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());
 cl::sycl::queue defaultQueue;
 defaultQueue.submit([&] (cl::sycl::handler &cgh) {
 auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);
 auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);
 auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);

 });
}

Example: Vector Add
#include <CL/sycl.hpp>
template <typename T> kernel;

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());
 cl::sycl::queue defaultQueue;
 defaultQueue.submit([&] (cl::sycl::handler &cgh) {
 auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);
 auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);
 auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);
 cgh.parallel_for<kernel<T>>(cl::sycl::range<1>(out.size())),
 [=](cl::sycl::id<1> idx) {

 }));
 });
}

You must
provide a name
for the lambda

Create a parallel_for
to define the device

code

Example: Vector Add
#include <CL/sycl.hpp>
template <typename T> kernel;

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out) {
 cl::sycl::buffer<T, 1> inputABuf(inA.data(), out.size());
 cl::sycl::buffer<T, 1> inputBBuf(inB.data(), out.size());
 cl::sycl::buffer<T, 1> outputBuf(out.data(), out.size());
 cl::sycl::queue defaultQueue;
 defaultQueue.submit([&] (cl::sycl::handler &cgh) {
 auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);
 auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);
 auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);
 cgh.parallel_for<kernel<T>>(cl::sycl::range<1>(out.size())),
 [=](cl::sycl::id<1> idx) {
 outputPtr[idx] = inputAPtr[idx] + inputBPtr[idx];
 }));
 });
}

Example: Vector Add

template <typename T>
void parallel_add(std::vector<T> inA, std::vector<T> inB, std::vector<T> out);

int main() {

 std::vector<float> inputA = { /* input a */ };
 std::vector<float> inputB = { /* input b */ };
 std::vector<float> output = { /* output */ };

 parallel_add(inputA, inputB, output, count);
}

Single-source vs C++ kernel language
 Single-source: a single-source file contains both host and device code

 Type-checking between host and device
 A single template instantiation can create all the code to kick off work, manage data

and execute the kernel
 e.g. sort<MyClass> (myData);

 The approach taken by C++ 17 Parallel STL as well as SYCL

 C++ kernel language
 Matches standard OpenCL C
 Proposed for OpenCL v2.1
 Being considered as an addition for SYCL v2.1

Why ‘name’ kernels?
 Enables implementers to have multiple, different compilers for host and different devices

 With SYCL, software developers can choose to use the best compiler for CPU and the
best compiler for each individual device they want to support

 The resulting application will be highly optimized for CPU and OpenCL devices
 Easy-to-integrate into existing build systems

 Only required for C++11 lambdas, not required for C++ functors

 Required because lambdas don’t have a name to enable linking between different
compilers

Buffers/images/accessors vs shared pointers
 OpenCL v1.2 supports a wide range of different devices and operating systems

 All shared data must be encapsulated in OpenCL memory objects: buffers and images
 To enable SYCL to achieve maximum performance of OpenCL, we follow OpenCL’s

memory model approach
 But, we apply OpenCL’s memory model to C++ with buffers, images and accessors
 Separation of data storage and data access

What can I do with SYCL?

Anything you can do with C++!

With the performance and portability of OpenCL

Progress report on the SYCL vision
Open, royalty-free standard: released
Conformance testsuite: going into adopters package

Open-source implementation: in progress (triSYCL)
Commercial, conformant implementation: in progress
C++ 17 Parallel STL: open-source in progress

 Template libraries for important C++ algorithms: getting going
 Integration into existing parallel C++ libraries: getting going

Building the SYCL for OpenCL ecosystem
 To deliver on the full potential of high-performance heterogeneous systems

 We need the libraries
 We need integrated tools
 We need implementations
 We need training and examples

 An open standard makes it much easier for people to work together

 SYCL is a group effort
 We have designed SYCL for maximum ease of integration

Agenda
 How do we get to programming self-driving cars?
 SYCL: The open Khronos standard

 A comparison of Heterogeneous Programming Models
 SYCL Design Philosophy: C++ end to end model for HPC and consumers

 The ecosystem:
 VisionCpp
 Parallel STL
 TensorFlow, Machine Vision, Neural Networks, Self-Driving Cars

 Codeplay ComputeCPP Community Edition: Free Download

Using SYCL to Develop Vision Tools

A high-level CV framework
for OpenCL promoting:

Cross-platform portability

Performance portability
• Separation of concern

• Portable between different programming models and
architectures

• No modification in application
computation

• OpenCL enabled devices
• CPU

Ease of use
• Applications

• Easy to write code
• Unified front end to client code (API)

• Easily able to add customisable operations
• Compile time graph validation
• Predictable memory usage

A worthy addition to your tool kit

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Image
Size

0.968
3.579

13.51

57.291

1.603
4.513

13.375

[VALUE]

0

10

20

30

40

50

60

70

512 1024 2048 4096

VisionCPPFuse

OpenCV

Intel Core i7-4790K CPU 4.00GHz Image Size

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Oland PRO Radeon R7 240

Parallel STL: Democratizing Parallelism in C++

 Various libraries offered STL-like interface for parallel algorithms

 Thrust, Bolt, libstdc++ Parallel Mode, AMP algorithms
 In 2012, two separate proposals for parallelism to C++ standard:

 NVIDIA (N3408), based on Thrust (CUDA-based C++ library)
 Microsoft and Intel (N3429), based on Intel TBB andPPL/C++AMP

 Made joint proposal (N3554) suggested by SG1
 Many working drafts for N3554, N3850, N3960, N4071, N4409

 Final proposal P0024R2 accepted for C++17 during Jacksonville

Existing implementations
 Following the evolution of the document
 Microsoft: http://parallelstl.codeplex.com
 HPX: http://stellar-

group.github.io/hpx/docs/html/hpx/manual/parallel.html
 HSA: http://www.hsafoundation.com/hsa-for-math-

science
 Thibaut Lutz: http://github.com/t-lutz/ParallelSTL
 NVIDIA: http://github.com/n3554/n3554
 Codeplay:

http://github.com/KhronosGroup/SyclParallelSTL

What is Parallelism TS v1 adding?
 A set of execution policies and a collection of parallel

algorithms
 The exception_list object
 The Execution Policies
 Paragraphs explaining the conditions for parallel

algorithms
 New parallel algorithms

std :: vector <int > data = { 8, 9, 1, 4 };
std :: sort (std :: begin (data), std :: end(data
));
if (std :: is_sorted (data)) {
 cout << " Data is sorted ! " << endl ;
}

Sorting with the STL

A sequential sort
std :: vector <int > data = { 8, 9, 1, 4 };

std :: sort (std :: par , std :: begin (data), std :: end (data
));

if (std :: is_sorted (data)) {

 cout << " Data is sorted ! " << endl ;

}

A parallel sort

• par is an object of an Execution
Policy

• The sort will be executed in
parallel using an implementation-
defined method

template <typename KernelName = DefaultKernelName >

class sycl_execution_policy {

public :

 using kernelName = KernelName ;

 sycl_execution_policy () = default ;

 sycl_execution_policy (cl :: sycl :: queue q);

 cl :: sycl :: queue get_queue () const ;

};

The SYCL execution policy

std :: vector <int > data = { 8, 9, 1, 4 };

std :: sort (sycl_policy , std :: begin (v), std :: end (v));

if (std :: is_sorted (data)) {

 cout << " Data is sorted ! " << endl ;

}

• sycl_policy is an Execution Policy
• data is a standard stl::vector
• Technically, will use the device returned by

default_selector

Heterogeneous load balancing

Future work

https://github.com/KhronosGroup/SyclParallelSTL

https://github.com/KhronosGroup/SyclParallelSTL�

Other projects – in progress

Eigen: C++
linear algebra
template
library

TensorFlow:
Google’s
machine
learning
library

+ others …

Conclusion
 Heterogeneous programming has been supported through OpenCL for years
 C++ is a prominent language for doing this but currently is only CPU-based
 Graph programming languages enables Neural network, machine vision
 SYCL allows you to program heterogeneous devices with standard C++ today
 ComputeCpp is available now for you to download and experiment

 For engineers/companies/consortiums producing embedded devices for automotive ADAS,
machine vision, or neural network

 Who want to deliver artificial intelligent devices that are also low power for e.g. self-driving cars,
smart homes

 But who are dissatisfied with the current single vendor locked in heterogeneous solution or
design/code with no reuse solution

 We provide performance-portable open-standard software across multiple platforms with long-
term support

 Unlike vertical locked in solutions such as CUDA, C++AMP, or HCC
 We have assembled a whole ecosystem of software accelerated by your parallel hardware enabling

reuse with open standards

Agenda
 How do we get to programming self-driving cars?
 SYCL: The open Khronos standard

 A comparison of Heterogeneous Programming Models
 SYCL Design Philosophy: C++ end to end model for HPC and consumers

 The ecosystem:
 VisionCpp
 Parallel STL
 TensorFlow, Machine Vision, Neural Networks, Self-Driving Cars

 Codeplay ComputeCPP Community Edition: Free Download

Community Edition
Available now for free!

Visit:

computecpp.codeplay.com

 Open source SYCL projects:
 ComputeCpp SDK - Collection of sample code and integration tools
 SYCL ParallelSTL – SYCL based implementation of the parallel algorithms
 VisionCpp – Compile-time embedded DSL for image processing
 Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/�
http://sycl.tech/�

Recommendations for the authors
 We encourage you to use this template, although it is not mandatory
 If you use your own template, please insert the CEE-SECR logo anywhere on

the title page. Just copy it from here:

 Consider the “Death by PowerPoint” recommendations:
http://www.slideshare.net/thecroaker/death-by-powerpoint

http://www.slideshare.net/thecroaker/death-by-powerpoint�
http://www.slideshare.net/thecroaker/death-by-powerpoint�
http://www.slideshare.net/thecroaker/death-by-powerpoint�
http://www.slideshare.net/thecroaker/death-by-powerpoint�
http://www.slideshare.net/thecroaker/death-by-powerpoint�

	Heterogeneous Computing in C++ for Self-driving cars
	Agenda
	How do we get from here…
	We have a mountain to climb
	This presentation will focus on:
	Codeplay
	What our ComputeCpp users say about us
	Where do we need to go?
	Performance trends
	How do we get there from here?
	Two models of software development
	Desirable Development
	The different levels of programming model
	Device-specific programming
	The route to full autonomy
	Why graph programming?
	Graph programming: some numbers
	Graph programming
	C-style graph programming
			&		 Device-Specific Programming
	C++-style graph programming
	C++ single-source programming
	Combining open standards, C++ and graph programming
	Putting it all together: building it
	Higher-level programming enablers
	Which model should we choose?
	They are not alternatives, they are layers
	Can specify, test and validate each layer
	For Codeplay, these are our layer choices
	For Codeplay, these are our products
	Further information
	Agenda
	C++ support for massive parallel heterogeneous devices
	C++ Std Timeline/status� https://wongmichael.com/2016/06/29/c17-all-final-features-from-oulu-in-a-few-slides/
	Pre-C++11 projects
	Status after June Oulu C++ Meeting
	Status after June Oulu C++ Meeting
	Status after June Oulu C++ Meeting
	Status after June Oulu C++ Meeting
	Slide Number 40
	C++1Y(1Y=17/20/22) SG1/SG5/SG14 Plan�red=C++17, blue=C++20? Black=future?
	Part 1: Parallel C++ Library�In C++17
	Execution Policies Published 2015
	Part 2: Forward Progress guarantees in C++17
	ParallelSTL
	Forward Progress Guarantees
	Part 3: Futures++ (.then, wait_any, wait_all) in future C++ 20�
	Futures & Continuations
	Summary Of Proposed Extensions (1)
	Summary Of Proposed Extensions (2)
	Summary Of Proposed Extensions (3)
	Part 4: Executors in future C++20
	Executors
	The Idea Behind Executors
	Several Competing Proposals
	Current Progress of Executors
	Current Progress of Executors
	Current Progress of Executors
	Executors: Bifurcation
	Features of C++ Executors
	Executor Framework: Abstract Platform details of execution.
	Purpose of executors:where/how execution
	Control relationship with Calling threads
	Executor Interface:semantic types exposed by executors
	Executor Interface:core constructs for launching work	
	Vector SIMD Parallelism for Parallelism TS2
	SIMD from Matthias Kretz and Mathias Gaunard
	Operations on datapar
	SYCL v1.2 release
	Slide Number 70
	SYCL is not magic
	What is SYCL for?
	What we want to achieve
	Why a new standard?
	What features of OpenCL do we need?
	How do we bring OpenCL features to C++?
	OpenCL / SYCL Stack
	Example SYCL Code
	Example SYCL Code
	How did we come to our decisions?
	Slide Number 81
	Compilation Model
	Compilation Model
	Compilation Model
	Slide Number 85
	Separate Source Compilation Model
	Single Source Compilation Model
	Single Source Compilation Model
	Single Source Compilation Model
	Single Source Compilation Model
	Benefits of Single Source
	Describing Parallelism
	Slide Number 93
	Directive vs Explicit Parallelism
	Task vs Data Parallelism
	Queue vs Stream Execution
	Data Locality & Movement
	Slide Number 98
	Cost of Data Movement
	Cost of Data Movement
	Slide Number 101
	Implicit vs Explicit Data Movement
	Slide Number 103
	Comparison of Memory Models
	SYCL: A New Approach to Heterogeneous Programming in C++
	SYCL for OpenCL
	The SYCL Ecosystem
	Slide Number 108
	Single Compilation Model
	Single Compilation Model
	Single Compilation Model
	SYCL is Entirely Standard C++
	SYCL Targets a Wide Range of Devices with SPIR
	Multi Compilation Model
	Multi Compilation Model
	Multi Compilation Model
	Multi Compilation Model
	Multi Compilation Model
	Multi Compilation Model
	Slide Number 120
	Representing Parallelism
	Slide Number 122
	Separating Storage & Access
	Storing/Allocating Memory in Different Regions
	Data Dependency Task Graphs
	Benefits of Data Dependency Graphs
	Slide Number 127
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Example: Vector Add
	Single-source vs C++ kernel language
	Why ‘name’ kernels?
	Buffers/images/accessors vs shared pointers
	What can I do with SYCL?
	Progress report on the SYCL vision
	Building the SYCL for OpenCL ecosystem
	Agenda
	 �Using SYCL to Develop Vision Tools
	 �A worthy addition to your tool kit
	Parallel STL: Democratizing Parallelism in C++�
	Existing implementations
	What is Parallelism TS v1 adding?
	Sorting with the STL
	The SYCL execution policy
	Heterogeneous load balancing
	Future work
	Other projects – in progress
	Conclusion
	Agenda
	Slide Number 156
	Slide Number 157
	Recommendations for the authors

