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Quiz
● Who has ever developed microservices architecture?

● Who has positive experience?

● Who has negative experience?
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Client

Classic client-server architecture

Server
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Client

Multi-tier architecture

StorageService
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Client

SOA

Хранилища

Сервисы

ESB

StoragesСервисыServices
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Nowadays typical case
1. We need a new enterprise system

2. We have the distribution network of clients

3. We have only 6 months  for MVP and one year for first release, developing for the end 
of days.

4. But microservices are strongly required!
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Microservices are just services but...
● Domain splitting

● Independence

● Everyone has own storage
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How to name a microservice?

User service

Profiles

Groups
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How to name a microservice?

Authorization service

Profiles

Groups

Authentication

Authorization
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How to name a microservice?

Authorization service

Profiles

Groups

Authentication

Authorization

Customers?

Business Units?
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How to name a microservice?

Gladiolus service

Profiles

Groups

Authentication

Authorization

Customers

Business Units
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How to name a microservice?

Gladiolus service

Profiles

Groups

Authentication

Authorization

Customers

Business Units

Postcodes States
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How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL
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How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL
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How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL
Master-Slave
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How to synchronize data storages?

Gladiolus

MySQL

GIS

MySQL

Order

PostgreSQL
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How to synchronize data storages?

Gladiolus

MySQL

GIS
service

MySQL

Order

PostgreSQLETL
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How to call a service?

Order Plan
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How to call a service?

Order Plan Store
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Gladiolus



How to call a service?

Order Plan Store
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Gladiolus



How to do transactions?

Order StoreFrontend
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How to do transactions?

Order
1. ID
2. Store
3. DB

StoreFrontend
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How to do transactions?

Order
1. ID
2. Store
3. DB

StoreFrontend
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How to do transactions?

Order
1. ID
2. 2PC

1. DB
2. Store

Store
REST?

Locking

Frontend
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How to do transactions?

Order
1. ID
2. 2PC

1. DB
2. Store

Store

Duplication

Frontend
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How to design software architecture?

Gladiolus

Postgres

Order Store

MySQL
ETL

Neo4J

MongoDB

MySQL

GIS
Plan

Notification
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How to change software architecture?

REUSE A MICROSERVICE

ONE DOES NOT SIMPLY
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Top 3 of microservices benefits

● Flexible scaling
● Flexible deployment and functionality
● Flexible development
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The key benefit of microservices 
architecture

Flexibility!

Agile!
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Monolith vs Microservices

● Clear and hard logic. 
ACID

● Strong contracts and 
interfaces

● Integrity and 
normalization

● Soft and fuzzy logic. 
Eventually consistent

● Soft contracts and 
dependencies

● Data duplication and 
polymorphing
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Monolith vs Microservices
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Monolith vs Microservices

32



Monolith vs Microservices

Microservices are weak 
but they can adapt to 

circumstances
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How to make components more 
independent

Order Planget
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The event driven design paradigm

Order Planevent ?event
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Martin Fowler

https://www.martinfowler.com/eaaDev/EventCollaboration.html



The event driven design for microservices
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Events Bus

Order Plan



The problem of distributed storage
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● We are used to store the final state of data
● Microservices are distributed system
● But how can we reconcile the data in the distributed system properly?

Order
{

….
}

Order
{

….
}

???



The problem of distributed storage
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● Use the distributed transaction or 2PC (with locking and complexity)
● Use the event sourcing as a single source of true



The event sourcing

Order Created

Order Changed
state

...

Order Changed
address

Order (aggregate)
{

….
address: “...”,
state: “processing”

}
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The event sourcing

● Single source of true
● Immutable
● Atomic
● Compensation events
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The event sourcing

Order Created

Order Changed
state

...

Order Canceled
state

Order (aggregate)
{

….
address: “...”,
state: “created”

}

41



The event sourcing

Order Created

Order Changed
state

...

Snapshot Order (aggregate)
{

….
address: “...”,
state: “processing”

}
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The event sourcing

Event storage

● Event Log (file + index)
● DB Table + JSON
● NoSQL (Elastic, MongoDB)
● Kafka (with full persistence)
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The event sourcing

● M. Fowler. 
https://martinfowler.com/eaaDev/EventSourcing.html

● Chris Richardson. https://microservices.io/patterns/data/event-
sourcing.html

● Sebastian Daschner. https://blog.sebastian-
daschner.com/entries/event_sourcing_cqrs_video_course

● Jonas Bonér. http://jonasboner.com/articles/
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Eventual consistency

Or don’t worry about the Strong Consistency and just take the 
Eventual Consistency 

● In distributed system the data can be inconsistent anyway 
(Frontend - Backend)

● If you use the event sourcing you can’t lose any data and all 
data will be consistent ultimately

● For critical transaction use the Soft Consistency(status changing 
or pending records)
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The event bus as an environment

● Simple publisher-subscriber queue
● Capacity
● Persistency
● Performance
● Distributed
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The event bus as an environment

● Kafka
● RabbitMQ (but it’s overuse)
● Amazon (SNS+SQS)
● NSQ
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What do we have for agile microservices 
architecture creation?

● The event driven design paradigm
● The event sourcing storage
● The event bus as an environment 
● The eventual consistency instead of transactions
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How to cook a microservice

● CQRS
● Stateless
● Resources oriented API
● Event handling

49



How to cook a microservice

API

Aggregates

QueriesCommands

Events

Events Bus

Handlers
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How to cook a microservice

API

Aggregates Queries

Commands

Events

Events Bus

Handlers
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How to cook a microservice

API Gateway

NotificationFrontend

Service

Events Bus

Service
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Event driven microservices architecture

PlanOrder

Events Bus

Store

1

create 

order

2

4.1

6
3

update 

store

4.2

5

update 

plan
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Event driven microservices architecture

Profile

Events Bus

User

management
Order Store Plan

API Gateway

Frontend

Authentication Notification

Unique Id

Integration

and

validation
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Authentication and user management

● Use OAuth
● Frameworks: Spring, IndentyServer 4
● PaaS & SaaS: Auth0, Curity

https://oauth.net/code/
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API Gateway

The Facade of your microservices

● Authentication
● Authorization
● Data aggregate
● Intelligent caching
● Discovering and balancing
● Frameworks: Spring, Ocelot
● SaaS & PaaS: Amazon, Oracle, APIGee
● Servers: Nginx, OSS: Tyk, DreamFactory, Kong, Traefik

56



Audit

● In the box since we have event sourcing

● ES for data aggregation
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Integration service

● Data aggregation from different microservices 
● Transfer data from one format to another
● Data adaptation
● Validation and data integrity 
● Use the serverless lambdas
● SaaS & PaaS: Amazon, Google cloud functions
● OSS: OpenLambda,  Serverless Framework, Kubeless
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Unique ID

● Don’t use auto-increment for ID at all
● Don’t generate any ID in the domain services
● Use UUIDs
● Use sequences
● You can your own implementation or any based on Twitter's 

Snowflake
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DevOps

● Full team member
● Full time
● The right hand of architect
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Contact Me

• Alexandr Shcherbakov

• Email: alexandr.sherby@gmail.com

• https://auriga.com/
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Summary
● The microservices come to us for a long period

● The whole team need to realize the key benefit of the microservices 
architecture first: flexibility and adaptation

● Use best practices like as the event-driven approach, the event sourcing and 
CQRS, existing services and frameworks

● Don’t miss DevOps!


