
Why microservices do not fly and how to
help them to take off

Alexandr Shcherbakov
Auriga, Inc

Software Engineering Conference Russia 2018
October 12-13

Moscow

Quiz
● Who has ever developed microservices architecture?

● Who has positive experience?

● Who has negative experience?

2

Client

Classic client-server architecture

Server

3

Client

Multi-tier architecture

StorageService

4

Client

SOA

Хранилища

Сервисы

ESB

StoragesСервисыServices

5

Nowadays typical case
1. We need a new enterprise system

2. We have the distribution network of clients

3. We have only 6 months for MVP and one year for first release, developing for the end
of days.

4. But microservices are strongly required!

6

Microservices are just services but...
● Domain splitting

● Independence

● Everyone has own storage

7

How to name a microservice?

User service

Profiles

Groups

8

How to name a microservice?

Authorization service

Profiles

Groups

Authentication

Authorization

9

How to name a microservice?

Authorization service

Profiles

Groups

Authentication

Authorization

Customers?

Business Units?

10

How to name a microservice?

Gladiolus service

Profiles

Groups

Authentication

Authorization

Customers

Business Units

11

How to name a microservice?

Gladiolus service

Profiles

Groups

Authentication

Authorization

Customers

Business Units

Postcodes States

12

How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL

13

How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL

14

How to synchronize data storages?

Gladiolus

MySQL

Order

MySQL
Master-Slave

15

How to synchronize data storages?

Gladiolus

MySQL

GIS

MySQL

Order

PostgreSQL

16

How to synchronize data storages?

Gladiolus

MySQL

GIS
service

MySQL

Order

PostgreSQLETL

17

How to call a service?

Order Plan

18

How to call a service?

Order Plan Store

19

Gladiolus

How to call a service?

Order Plan Store

20

Gladiolus

How to do transactions?

Order StoreFrontend

21

How to do transactions?

Order
1. ID
2. Store
3. DB

StoreFrontend

22

How to do transactions?

Order
1. ID
2. Store
3. DB

StoreFrontend

23

How to do transactions?

Order
1. ID
2. 2PC

1. DB
2. Store

Store
REST?

Locking

Frontend

24

How to do transactions?

Order
1. ID
2. 2PC

1. DB
2. Store

Store

Duplication

Frontend

25

How to design software architecture?

Gladiolus

Postgres

Order Store

MySQL
ETL

Neo4J

MongoDB

MySQL

GIS
Plan

Notification

26

How to change software architecture?

REUSE A MICROSERVICE

ONE DOES NOT SIMPLY

27

Top 3 of microservices benefits

● Flexible scaling
● Flexible deployment and functionality
● Flexible development

28

The key benefit of microservices
architecture

Flexibility!

Agile!

29

Monolith vs Microservices

● Clear and hard logic.
ACID

● Strong contracts and
interfaces

● Integrity and
normalization

● Soft and fuzzy logic.
Eventually consistent

● Soft contracts and
dependencies

● Data duplication and
polymorphing

30

Monolith vs Microservices

31

Monolith vs Microservices

32

Monolith vs Microservices

Microservices are weak
but they can adapt to

circumstances

33

How to make components more
independent

Order Planget

34

The event driven design paradigm

Order Planevent ?event

35

Martin Fowler

https://www.martinfowler.com/eaaDev/EventCollaboration.html

The event driven design for microservices

36

Events Bus

Order Plan

The problem of distributed storage

37

● We are used to store the final state of data
● Microservices are distributed system
● But how can we reconcile the data in the distributed system properly?

Order
{

….
}

Order
{

….
}

???

The problem of distributed storage

38

● Use the distributed transaction or 2PC (with locking and complexity)
● Use the event sourcing as a single source of true

The event sourcing

Order Created

Order Changed
state

...

Order Changed
address

Order (aggregate)
{

….
address: “...”,
state: “processing”

}

39

The event sourcing

● Single source of true
● Immutable
● Atomic
● Compensation events

40

The event sourcing

Order Created

Order Changed
state

...

Order Canceled
state

Order (aggregate)
{

….
address: “...”,
state: “created”

}

41

The event sourcing

Order Created

Order Changed
state

...

Snapshot Order (aggregate)
{

….
address: “...”,
state: “processing”

}

42

The event sourcing

Event storage

● Event Log (file + index)
● DB Table + JSON
● NoSQL (Elastic, MongoDB)
● Kafka (with full persistence)

43

The event sourcing

● M. Fowler.
https://martinfowler.com/eaaDev/EventSourcing.html

● Chris Richardson. https://microservices.io/patterns/data/event-
sourcing.html

● Sebastian Daschner. https://blog.sebastian-
daschner.com/entries/event_sourcing_cqrs_video_course

● Jonas Bonér. http://jonasboner.com/articles/

44

Eventual consistency

Or don’t worry about the Strong Consistency and just take the
Eventual Consistency

● In distributed system the data can be inconsistent anyway
(Frontend - Backend)

● If you use the event sourcing you can’t lose any data and all
data will be consistent ultimately

● For critical transaction use the Soft Consistency(status changing
or pending records)

45

The event bus as an environment

● Simple publisher-subscriber queue
● Capacity
● Persistency
● Performance
● Distributed

46

The event bus as an environment

● Kafka
● RabbitMQ (but it’s overuse)
● Amazon (SNS+SQS)
● NSQ

47

What do we have for agile microservices
architecture creation?

● The event driven design paradigm
● The event sourcing storage
● The event bus as an environment
● The eventual consistency instead of transactions

48

How to cook a microservice

● CQRS
● Stateless
● Resources oriented API
● Event handling

49

How to cook a microservice

API

Aggregates

QueriesCommands

Events

Events Bus

Handlers

50

How to cook a microservice

API

Aggregates Queries

Commands

Events

Events Bus

Handlers

51

How to cook a microservice

API Gateway

NotificationFrontend

Service

Events Bus

Service

52

Event driven microservices architecture

PlanOrder

Events Bus

Store

1

create

order

2

4.1

6
3

update

store

4.2

5

update

plan

53

Event driven microservices architecture

Profile

Events Bus

User

management
Order Store Plan

API Gateway

Frontend

Authentication Notification

Unique Id

Integration

and

validation

54

Authentication and user management

● Use OAuth
● Frameworks: Spring, IndentyServer 4
● PaaS & SaaS: Auth0, Curity

https://oauth.net/code/

55

API Gateway

The Facade of your microservices

● Authentication
● Authorization
● Data aggregate
● Intelligent caching
● Discovering and balancing
● Frameworks: Spring, Ocelot
● SaaS & PaaS: Amazon, Oracle, APIGee
● Servers: Nginx, OSS: Tyk, DreamFactory, Kong, Traefik

56

Audit

● In the box since we have event sourcing

● ES for data aggregation

57

Integration service

● Data aggregation from different microservices
● Transfer data from one format to another
● Data adaptation
● Validation and data integrity
● Use the serverless lambdas
● SaaS & PaaS: Amazon, Google cloud functions
● OSS: OpenLambda, Serverless Framework, Kubeless

58

Unique ID

● Don’t use auto-increment for ID at all
● Don’t generate any ID in the domain services
● Use UUIDs
● Use sequences
● You can your own implementation or any based on Twitter's

Snowflake

59

DevOps

● Full team member
● Full time
● The right hand of architect

60

Contact Me

• Alexandr Shcherbakov

• Email: alexandr.sherby@gmail.com

• https://auriga.com/
61

Summary
● The microservices come to us for a long period

● The whole team need to realize the key benefit of the microservices
architecture first: flexibility and adaptation

● Use best practices like as the event-driven approach, the event sourcing and
CQRS, existing services and frameworks

● Don’t miss DevOps!

