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December 5, 2019

Czech Technical University

Prague - Czech Republic

Université de Toulon
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Far-field boundary conditions for stably stratified flows

1. Mathematical Model

The full incompressible, viscous (laminar), variable density model can be written
as:

∂ρ

∂t
+ u · grad ρ = 0 , (1)

ρ

(
∂u

∂t
+ div(u⊗ u)

)
= −grad p + div 2µD + ρg . (2)

These equations together with the incompressibility constraint divu = 0 lead to
the set of governing equations for the velocity u(x, t), density ρ(x, t) and pres-
sure field p(x, t).

This model is sometimes called the non-homogeneous Navier-Stokes equations .
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The pressure and density fields can be assumed to be a perturbation of the hy-
drostatic equilibrium state:

ρ(x, t) = ρ
0
(x) + ρ′(x, t) i.e. ρ(x, y, z, t) = ρ

0
(z) + ρ′(x, y, z, t)

p(x, t) = p
0
(x) + p′(x, t) i.e. p(x, y, z, t) = p

0
(z) + p′(x, y, z, t)

The background density and pressure fields are linked by the hydrostatic relation:

grad p
0

= ρ
0
g i.e.

∂p
0

∂z
= ρ

0
g where g = (0, 0, g),

This leads to a rearranged momentum equations:

ρ

(
∂u

∂t
+ div(u⊗ u)

)
= −grad p′ + div 2µD + (ρ− ρ

0
)︸ ︷︷ ︸

ρ′

g .

So far no approximations were made.
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The Boussinesq approximation is obtained from the full model by replacing the
complete density ρ(x, t) on the left hand side of momentum equation by a suit-
able fixed (in space and time) characteristic density ρ∗.

∂ρ

∂t
+ u · grad ρ = 0

ρ∗
(
∂u

∂t
+ div(u⊗ u)

)
= −grad p′ + div 2µD + (ρ− ρ

0
)g .

This system was used in the numerical simulations presented hereafter.

It is often equivalently rewritten in terms of the density perturbation as:

∂ρ′

∂t
+ u · grad ρ′ = −wγ where γ =

∂ρ
0

∂z

ρ∗
(
∂u

∂t
+
(
u · grad

)
u

)
= −grad p′ + div 2µD + ρ′g .
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2. Stably Stratified Flows

The stable density/temperature gradient is responsible for generating waves in
the flow field.
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These waves are characterized by the Brunt–Väisälä frequency

N =

√
g

ρ∗
∂ρ0
∂z

=

√
− g

Θ∗
∂Θ0

∂z
(3)

The wavelength can be estimated as λ ≈ U ∗/N .
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3. Numerical Solver

• Time-marching method – The steady solution is reached as a limit for t→∞
• Artificial compressibility – A pseudo-time derivative of pressure is added

to the continuity equation (i.e. the divergence-free constraint) to enforce the
incompressibility.

• Semi-discretization (method of lines) – The system of PDE’s is first dis-
cretized in space, which leads to a system of ODE’s describing the temporal
evolution at every grid point.

• Compact finite-difference space discretization – High-resolution approxima-
tion of spatial derivatives, using rather compact computational stencil.

• SSP Runge-Kutta time stepping – A time-integration method that doesn’t
introduce non-physical oscillations to the numerical solution.

• Low-pass filter stabilization – Compact filters are used to remove high- (i.e.
grid-) frequency oscillations from numerical solution, while the longer wave-
lengths remain undamped.
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4. Computational Setup

The hill surface elevation zs(r) is given by an inverse of a fourth order polynomial
in terms of a distance r from the hill symmetry axis.

zs(r) =
h

1 + (r/h)
4

The domain dimensions are Lx = 30h, Ly = 10h, Lz = 5h.
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Physical parameters
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The fluid is characterized by density ρ∗ = 1000kg ·m−3 and dynamical viscosity
µ = 10−3kg · m−1 · s−1. The linear background density profile is defined by
ρ

0
(z) = ρ∗ + γ · (z − h). The gravity acceleration acts against the z coordinate, so

g = −10m·s−2. The hill height h = 2cm = 0.02mwas chosen as the characteristic
length scale for both, the Reynolds number (where h represents the boundary
layer thickness) as well as for the Froude number (where h represents the vertical
displacement scale).
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The two physical quantities that are being varied in simulations are the charac-
teristic (free stream) velocity U∞[m · s−1] and the background density gradient
γ = ∂ρ0

∂z
[kg ·m−4]. The Froude number is then given by

F =
U∞
Nh

=
U∞

0.1
√
|γ| · 0.02

= 500
U∞√
|γ|

=
1

400

Re

N

γ = 0
N = 0

γ = −25
N = 1/2

γ = −100
N = 1

γ = −400
N = 2

γ = −1600
N = 4

U∞ = 0.01
Re = 200

∞ 1 1/2 1/4 1/8

U∞ = 0.02
Re = 400

∞ 2 1 1/2 1/4

U∞ = 0.04
Re = 800

∞ 4 2 1 1/2

Tomáš Bodnár, Philippe Fraunié. 9/33
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5. Preliminary Simulations

U∞ = 0.01 0.02 0.04

F =∞

γ = 0 γ = 0 γ = 0

F = 1

γ = −25 γ = −100 γ = −400

F = 1/2

γ = −100 γ = −400 γ = −1600
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U∞ = 0.01 0.02 0.04
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U∞ = 0.01 0.02 0.04
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Boundary issues

• Sensitivity to boundary conditions

• Non-physical effects due to boundary conditions

• Long-range influence of boundary conditions

• Coupling between boundary conditions

• Convergence issues

• Well posednes issues

• Physical / Mathematical / Numerical conditions
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6. Boundary Conditions

The standard computational setup used in the below discussed series of simula-
tions is based on the following boundary conditions:

• Inlet . . . The velocity profile u = (u(z), 0, 0) is prescribed. The horizontal ve-
locity component u is given by the second order Pohlhausen-Kármán profile
u(z) = U∗

(
2z̃ − z̃2

)
, where non-dimensional height z̃ is defined using the

boundary layer thickness H = Lz as z̃ = z/H . Density perturbation ρ′ is set
to zero, i.e. ρ = ρ

0
(z).

• Outlet . . . All velocity components and also the density (perturbation) are ex-
trapolated.

• Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is set
to u = (0, 0, 0). The density is extrapolated.

• Free stream . . . All velocity components and also the density are extrapolated.

• Sides . . . All velocity components and also the density are extrapolated.
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Far-field boundary
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Far-field boundary conditions for stably stratified flows

Vertical velocity contours and flow streamlines in the plane of symmetry.

• Boundary is purely artificial

• Inlet/Outlet type is not a-priori defined

• Velocity vector is almost parallel to the boundary

• Far-field boundary is not “far enough”
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Compatibility of boundary conditions

w =0z u =0x u=U

u =0x

zw =0

w=0

u=U(z)
&

w=0

=0x

&

u +w =0x

u   +w   =0zx

z

ρ

ρρ

w=0u=0

• “soft” conditions are not soft enough

• velocity, density and pressure conditions are strongly coupled
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Vertical velocity isosurfaces.

complete solution truncated solution
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Far-field boundary conditions for stably stratified flows

Vertical velocity contours in the plane of symmetry – truncated solution .

Vertical velocity contours in the plane of symmetry – truncated domain – ∂p
∂n

= 0.
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Contours of the vertical velocity component w and flow streamlines.

truncated solution truncated domain – ∂p
∂n

= 0
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Contours of the transversal velocity component v and flow streamlines.

truncated solution truncated domain – ∂p
∂n

= 0
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Isosurfaces of the vertical velocity component w.

Isosurfaces of the transversal velocity component v.

truncated solution truncated domain – ∂p
∂n

= 0
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Other (better) options?

• Do-Nothing condition (Rannacher, Heywood, Turek (1993))

p = µ
∂un
∂n

and µ
∂uτ
∂n

= 0

• Directional Do-Nothing condition (Braack, Mucha (2014))

p = µ
∂un
∂n
− 1

2
ρu−nun

• “Do-Something” condition – Convective Pressure Derivative (CPD)

∂p

∂n
= ρ∗|u|∂un

∂n
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7. Numerical Results

Contours of the vertical velocity component w - nondimensionalized w̃ = w/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Contours of the transversal velocity component v - nondimensionalized ṽ = v/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Isosurfaces of the transversal velocity component v - nondimensionalized ṽ = v/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Isosurfaces of the vertical velocity component w - nondimensionalized w̃ = w/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Far-field boundary conditions for stably stratified flows

Pressure contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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Far-field boundary conditions for stably stratified flows

Longitudinal velocity contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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Vertical velocity contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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8. Conclusions & Remarks

• Physical interpretation/justification of the CPD condition – The importance of the
term ∂un

∂n
is really essential. It can be better understood when a local coordi-

nate system is adopted at an artificial boundary point. Let us, e.g., assume
that the (outer) normal direction is associated with the z axis, while the x and
y axes now define a tangential plane (to boundary). Due to incompressibil-
ity, i.e., due to the divergence-free constraint ux + vy + wz = 0, the value of
normal derivative of normal velocity component wz indicates to what extent
the tangential, two-dimensional continuity equation ux + vy = 0 is satisfied,
i.e. ux + vy = −wz. So, when wz = 0, the flow field can be seen as locally
two-dimensional and it makes a sense to drop the pressure derivative in the
third (normal) direction. Any imbalance of this local two-dimensionality of
the flow field leads to the appearance of the normal pressure derivative. In the
absence (or negligibility) of local viscous forces, the pressure gradient should
compensate the inertia represented by the convective term. Thus the propor-
tionality factor (with respect the normal velocity normal derivative ∂un

∂n
= wz)

was set to ρ∗|u|, which assures the proper (convective term like) scaling and
is invariant to the orientation of the chosen coordinate system.
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Far-field boundary conditions for stably stratified flows

• No-slip wall & Inlet – It is good to note that at the no-slip wall (where |u| = 0)
the CPD condition reduces to the classical homogeneous Neumann pressure
condition. Also at the inlet, where ∂un

∂n
vanishes (e.g., due to prescribed uτ =

0) the homogeneous Neumann condition for pressure is recovered. So, in
fact, we can claim, that in our case we have used the CPD condition on all
boundaries, except the outlet.
• Velocity at the far-field boundaries – The (linear) extrapolation (equivalent to

the use of one-sided (backward) first order approximation of derivatives at
the boundary points) of all velocity components used in this study seems to
work well for the solved test case. The possibility of using the homogeneous
Neumann condition for the tangential components of velocity (while keep-
ing the extrapolation for the normal one), was successfully tested. It has only
marginal (but yet visible) effect on the solution close to the boundary. Its use
however can be of some importance in the theoretical analysis of the model.
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THE END
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